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Abstract—We present a sample path dependent measure of
causal influence between time series. The proposed causal mea-
sure is a random sequence, a realization of which enables
identification of specific patterns that give rise to high levels of
causal influence. We show that these patterns cannot be identified
by existing measures such as directed information (DI). We
demonstrate how sequential prediction theory may be leveraged
to estimate the proposed causal measure and introduce a notion
of regret for assessing the performance of such estimators. We
prove a finite sample bound on this regret that is determined
by the worst case regret of the sequential predictors used in
the estimator. Justification for the proposed measure is provided
through a series of examples, simulations, and application to stock
market data. Within the context of estimating DI, we show that,
because joint Markovicity of a pair of processes does not imply
the marginal Markovicity of individual processes, commonly used
plug-in estimators of DI will be biased for a large subset of
jointly Markov processes. We introduce a notion of DI with
“stale history”, which can be combined with a plug-in estimator
to upper and lower bound the DI when marginal Markovicity
does not hold.

Index Terms—Causality, Relative Entropy, Sequential Predic-
tion, Granger, Markov Process.

I. INTRODUCTION

The need to identify and quantify causal relationships
between two or more time series from purely observational
data is ubiquitous across academic disciplines. Recent exam-
ples include economists seeking to understand the directional
interdependencies between foreign stock indices [1], [2] and
neuroscientists seeking to identify directed networks that ex-
plain neural spiking activity [3], [4].

Building upon the the ideas of Wiener [5], Granger [6]
proposed the following perspective on causal influence: We
say that a time series Y is “causing” X if we can better
predict X given the past of all information than given the
past of all information in the universe excluding Y . While
Granger’s original treatment only considered linear Gaussian
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regression models, his proposed definition applies in general
and is here collectively termed Granger causality (GC). The
inclusion of “all information in the universe” in GC serves
to avoid the effects of confounding, i.e. to avoid incorrectly
inferring that Y influences X when in reality both X and Y
are influenced by a third process, Z. It is important to note that
GC lacks mention of interventions, a concept that is central to
well-accepted notions of causal influence popularized by Pearl
[7], [8]. In [9], Eichler and Didelez develop a framework that
formalizes interventions in the context of GC, enabling the
distinction between scenarios where changing the value of Y
(by means of an intervention) results in a change in the value
of X , and those where Y merely aids in the prediction of X .
Absent this formal analysis, GC is better viewed as a measure
of predictive utility. Nevertheless, it continues to be a popular
tool (for example [10]), and is the focus of this paper. Thus, we
use the terms “cause,” “causal effect,” etc. within the context
of Granger’s perspective unless otherwise stated.

More modern information theoretic interpretations of
Granger’s perspective on causality include directed informa-
tion (DI) [11]–[13] and transfer entropy (TE) [14], which is
equivalent to GC for Gaussian autoregressive processes [15].
Justification for use of the DI for characterizing directional
dependencies between processes was given in [16], where it
was shown that, under mild assumptions, the DI graph is
equivalent to the so-called minimal generative model graph.
It was further shown in [17] that the DI graph can be
viewed as a generalization of linear dynamical graphs. As a
result, the directional dependencies encoded by DI are well
equipped to identify the presence or absence of a causal link
under Granger’s perspective in the general non-linear and non-
Gaussian settings.

Interestingly, both GC and DI are determined entirely by
the underlying probabilistic model (i.e. joint distribution) of
the random processes in question. It is clear that once the
model is determined, these methods provide no ability to
distinguish between varying levels of causal influence that may
be associated with specific realizations of those processes. As
a result, GC and DI are only well suited to answer causal
questions that are concerned with average influences between
processes. Examples of this style of question include “Does
dieting affect body weight?” and “Does the Dow Jones stock
index influence Hang Seng stock index?”. Symbolically, we
represent this question as Q1:“Does Y i−1 cause Xi?”, where
the superscript represents and the collection of samples up to
time i − 1 and capital letters are used to represent random
variables and processes.

A natural next question to ask is how the aforementioned
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measures may be adapted to be sample path dependent. In par-
ticular, one might pose the question Q2:“Did yi−1 cause xi?”,
where the lowercase letters now represent specific realizations
of the processes X and Y . Examples of these questions would
be “Did eating salad cause me to lose weight?” and “Did
the dip in the price of the Dow Jones cause the spike in the
price of the Hang Seng?”. One information theoretic approach
to answering Q2 is the substitution of self-information for
entropy wherever entropy appears in the definition of DI [18].
The issue is that the resulting “local” extension of DI may take
on negative values, and it is unclear how these values should
be interpreted with regard to the presence/absence of a causal
link. As a result, causal measures that use the self information
have not seen widespread adoption. While this may appear
to be a result of a particular methodology, it is in fact a
fundamental challenge with Q2 arising from the handling of
counterfactuals. This challenge relates to what Holland [19]
referred to as the “fundamental problem of causal influence,”
namely that we cannot observe the value that Xi would take
under two realizations of Y i−1, i.e. the true realization yi−1

and some counterfactual realization ỹi−1. A popular approach
to dealing with counterfactuals is structural equation models
(SEMs). Using an SEM, one can estimate the “noise” that
gave rise to an outcome xi and infer the x̃i that would have
occurred had yi−1 been ỹi−1. The interested reader is referred
to [7] and [20] for more details on SEMs.

While it is clear that Q1 lacks the resolution to identify
specific points on a sample path for which a large causal
influence is elicited, Q2 introduces the added challenge of
counterfactuals and thus there is no clear approach within
the GC framework. This observation motivates our proposed
question of study, Q3:“Does yi−1 cause Xi?”. In other words,
we seek to identify the causal effect that particular values of
Y have on the distribution of the subsequent sample of X .
Examples of this include “Which diets are most informative
about weight loss outcomes?” and “When does the Dow Jones
have the greatest effect on the Hang Seng?”. To answer
this question, we build on the work of [21] and [22] in the
development of a sample path dependent measure of causal
influence.

Such a measure will necessarily capture dynamic changes
in causal influence between processes. The means by which
causal influences vary with time is two-fold. First, it is clear
that when the joint distribution of the collection of processes
is non-stationary, there will be variations in time with respect
to their causal interactions. Second, we note that stationary
processes may exhibit time-varying causal phenomena when
certain realizations of a process have a greater level of
influence than others (see Section III-A1). The latter cannot
be captured by GC and DI, which are determined entirely
by the joint distribution and thus will only change when the
distribution changes. Furthermore, since estimating GC and
DI requires taking a time-average, capturing dynamic changes
resulting from non-stationarities necessitates approximating
an expectation using a sliding window. The sample path
dependent measure, on the other hand, captures both types of
temporal dynamics: estimates of the sample path measure can
be obtained for any processes for which we can have reliable

sequential prediction algorithms.
In developing techniques for estimating the proposed mea-

sure, we have identified a challenge in estimating information
theoretic measures of causal influence that has been commonly
overlooked in the literature. While it is well understood that
a collection of jointly Markov processes does not necessarily
exhibit Markovicity for subsets of processes, the implications
of this on information theoretic causal measures are not well
studied. An analogous statement with regard to finite order
autoregressive processes and the biasing effect this has on
estimates of GC was studied in [23], but this work has yet to
be adopted in the information theory community. It comes as
no surprise that the issues with GC estimators identified in [23]
may be extended to DI estimators. Thus, a characterization of
when estimators of DI are unbiased and a means of addressing
the bias when it arises are lacking. As such, we build upon
our earlier work [24] to address both of these unmet needs in
Section IV-A in an effort to establish an understanding of when
one can expect to obtain unbiased estimates of information
theoretic causal measures.

The contributions of this paper may be summarized as
follows:
• A methodology for assessing causal influences between

time series in a sample-path specific and time-varying
manner, by answering the question “Does yi−1 cause
Xi?”. This is particularly relevant when there are infre-
quent events which exhibit large causal influences, which
would be “averaged out” using any causal measure (e.g.
GC and DI) which takes an average over all sample paths.

• A framework using sequential prediction for estimating
the dynamic causal measure with associated upper bounds
on the worst case “causality regret”.

• A characterization of when unbiased estimates of DI can
be obtained using concepts from causal graphical models
and a novel methodology for bounding the DI when
unbiased estimates cannot be obtained.

• Demonstration of the causal measure’s value through
application to simulated and real data.

The remainder of this paper is organized as follows: fol-
lowing a brief overview of notation, Section II provides a
technical summary of related work. In Section III we define the
measure, present key properties, and provide justification for
the measure through several examples. Section IV provides a
framework for estimating the measure. Section V demonstrates
the measure on simulated and real data. Finally, Section VI
contains a discussion of the results and opportunities for future
work.

A. Notation and Definitions

Let X , Y , and Z denote discrete finite-alphabet random
processes, unless otherwise specified. We denote processes at
a given time point with a subscript and denote the space of
values they may take with caligraphic letters, i.e. Xi ∈ X .
Without loss of generality, let X = {0, 1, 2, . . . , |X | − 1}. A
temporal range of a process is denoted by a subscript and
superscript, i.e. Xn

i = (Xi, Xi+1, . . . , Xn), and we define
Xn , Xn

1 . Realizations of processes are given by lowercase
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letters. Probability mass functions (pmfs) are equivalently
referred to as “distributions” and are denoted by f . These
distributions are characterized by a subscript, which is of-
ten omitted when context allows. For example pXi

(xi) ≡
p(xi) gives the distribution of a single time point of X ,
pXn,Y n(xn, yn) ≡ p(xn, yn) gives the joint distribution of
X and Y , and pXi|Xi−1(xi | xi−1) ≡ p(xi | xi−1) gives
the conditional distribution of X at a single time conditioned
on the past of X . Lastly, we define the causally conditional
distribution with lag k as:

p(xn || yn−k) ,
n∏
i=1

p(xi | xi−1, yi−k). (1)

Note that the standard interpretation of the causal1 condition-
ing (as in [25]) is recovered by letting k = 0.

We will briefly review some information theoretic quantities
that are used frequently throughout the paper. The entropy is
given by:

H(Xn) =
∑
xn

p(xn) log
1

p(xn)

where it is implied that the sum is over all xn ∈ Xn and the
logarithm is base two (as are all logarithms throughout). The
conditional entropy is given by:

H(Xn | Y n) =
∑
xn,yn

p(xn, yn) log
1

p(xn | yn)

The causally conditional entropy is given by substituting the
causally conditional distribution for the conditional distribu-
tion:

H(Xn || Y n−k) =
∑
xn,yn

p(xn, yn) log
1

p(xn || yn−k)

For any of the above defined variants of entropy, the
corresponding entropy rates are given by:

H̄(X) = lim
n→∞

1

n
H(Xn) (2)

H̄(X | Y ) = lim
n→∞

1

n
H(Xn | Y n) (3)

H̄(k)(X || Y ) = lim
n→∞

1

n
H(Xn || Y n−k) (4)

It should be noted that the entropy rates may not exist for all
processes.

The conditional mutual information is given by:

I(Xn;Y n | Zn) = H(Xn | Zn)−H(Xn | Y n, Zn)

with the (unconditional) mutual information I(Xn;Y n) be-
ing obtained by removing Zn everywhere it appears in the
above equation. Finally, the relative entropy or KL-divergence
between two distributions pXi

and p′Xi
is given by:

D(pXi || p′Xi
) =

∑
xi

p(xi) log
p(xi)

p′(xi)
.

1The term “causal” is overloaded, as it is used here in the control theoretic
sense strictly to mean “non-anticipative.”

II. RELATED WORK

We now provide a brief summary of three key concepts
in the measurement of causal influence across time series,
namely Granger causality (GC) [6], directed information (DI)
[12], [13], and causal strength (CS) [26]. While some key
points will be presented here, a comprehensive summary of
the relationships between GC and DI may be found in [27].

A. Granger Causality

While Granger’s perspective on causality underlies most
modern studies in causality between time series, his original
treatment was limited to linear Gaussian AR models [6].
For clarity, we will here present the case with scalar time
series. Formally, define the three real-valued random processes
(Xi, Yi, Zi : i ≥ 1). As in Granger’s original treatment, we
let Zn represent all the information in the universe in order
to avoid the effects of confounding. Next, define two models
of Xi:

Xi =
d∑
j=1

ajXi−j + bjYi−j + cjZi−j + Ui (5)

Xi =

d∑
j=1

djXi−j + ejZi−j + Vi (6)

where aj , bj , cj , dj , ej ∈ R are the model parameters and Ui ∼
N (0, σ2

U ) and Vi ∼ N (0, σ2
V ). We see that the class of models

given by (6) is a subset of the models given by (5) where the
next Xi does not depend on past Y i−1. Thus, a non-negative
measure of the extent of causal influence of Y on X may be
defined by:

GY→X , ln
σ2
V

σ2
U

(7)

The limitations of Granger causality extend considerably
beyond the restriction to linear models (see [23] for a com-
prehensive summary). Of particular interest is the fact that
if a VAR process is of finite order, subsets of the process
will in general be infinite order. While it is possible to
redefine the model in (6) to be infinite order, this creates
obvious challenges in attempting to estimate Granger causality.
Considering this issue is not addressed by the subsequent
existing methods, we will revisit this issue in Section IV-A.

B. Directed Information

The concept directed information was first introduced under
the name transinformation by Marko in 1973 [12] in the
context of bidirectional communication theory. It was later
revisited in 1990 by Massey [13] who defined the directed
information from a sequence Y n to Xn as:

I(Y n → Xn) =
n∑
i=1

I(Y i;Xi | Xi−1) (8)

= H(Xn)−H(Xn || Y n) (9)

Unless otherwise specified, we assume that there are no
instantaneous causations, i.e. that Xi and Yi are conditionally
independent given the past Xi−1 and Y i−1. Should one want
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to allow for instantaneous causations, the proposed methods
may be trivially extended to accommodate. As such, we will
primarily consider the reverse DI [28]:

I(Y n−1 → Xn) =
n∑
i=1

I(Y i−1;Xi | Xi−1) (10)

= H(Xn)−H(Xn || Y n−1) (11)

noting that under the assumption of no instantaneous causa-
tion, I(Y n → Xn) = I(Y n−1 → Xn).

Given that the DI is given by a sum over time, one may
be interested in how causal relationships are exhibited on
average. This can be accomplished through use of the directed
information rate [25], given by:

Ī(Y → X) = lim
n→∞

1

n
I(Y n−1 → Xn) (12)

= H̄(X)− H̄(1)(X || Y ) (13)

Lastly, we note that in order to avoid confounding, we may
include the side information Zn to get the following definitions
of causally conditioned DI and causally conditioned DI rate:

I(Y n−1 → Xn || Zn−1) =
n∑
i=1

I(Y i;Xi | Xi−1, Zi−1)

(14)

Ī(Y → X || Z) = lim
n→∞

1

n
I(Y n−1 → Xn || Zn−1) (15)

C. Causal Strength

In [26], Janzing et al. propose an axiomatic measure of
causal strength (CS) based on a set of postulates that they
propose should be satisfied by a causal measure. Furthermore,
they present numerous examples to illustrate where Granger
causality and directed information do not give results con-
sistent with intuition. While this measure was proposed to
measure influences in general causal graphs, it has a clear
interpretation in the context of measuring causal influences
between two time series. In particular, for measuring the CS
from Y to X , begin by considering the generalization of
the two models utilized by GC in (5) and (6) to arbitrary
probability distributions p(Xi | Xi−1, Y i−1, Zi−1) and p(Xi |
Xi−1, Zi−1). Next, note that the second distribution has the
following factorization when summing over all possible pasts
of Y :

p(Xi | Xi−1, Zi−1)

=
∑
yi−1

p(Xi | Xi−1, yi−1, Zi−1)p(yi−1 | Xi−1, Zi−1)

The first term in the sum may be viewed as measuring the
direct effects of the pasts of X , Y , and Z, on the distribution
of Xi. The second term, however, is in some sense measuring
the indirect effects of the pasts of X and Z on Xi in that
they affect the distribution of Xi through their effect on
the distribution of Y i−1. Thus, the key idea behind CS is
the introduction of the “post-cutting” distribution, where the
conditional distribution found in the second term is replaced
with a marginal distribution (see Section 4.1 of [26] for a

formal definition). As a result, the (time series) CS from Y to
X with side information Z is given by:

CY→X , E
[
D(pXi|Xi−1,Y i−1,Zi−1 || p̃Xi|Xi−1,Zi−1)

]
(16)

where the expectation is taken with respect to pXi−1,Y i−1,Zi−1

and the post-cutting distribution is defined as:

p̃Xi|Xi−1,Zi−1(Xi) ,
∑
yi−1

p(Xi | Xi−1, yi−1, Zi−1)p(yi−1)

(17)
The post-cutting distribution is designed to ensure that the
extent to which Y has a causal effect on X depends only
upon Y and other direct causes of X (see P2 in [26]). In the
context of measuring causal influences between time series,
this can be seen as correcting for scenarios in which X may
be very well predicted by its own past while not being caused
by its own past. This scenario arises in models like the one
depicted in the center of Figure 1. In such a scenario, it is
possible to have I(Y n−1 → Xn) = 0 despite the fact that
Yi−1 is, in some sense, the sole cause of Xi. The details of
this example are made clear in Section III-A2.

By presenting an axiomatic framework for measuring causal
influences, Janzing et al. provide a robust justification CS.
With that said, we note that like GC and DI, CS is determined
solely by the underlying probabilistic model. As such, it may
be the preferred technique for addressing Q1, but it does not
represent how different realizations may give rise to different
levels of causal influence.

D. Self-Information Measures

All of the aforementioned techniques involve taking an
expectation over the histories of the time series in question,
and are thus well suited to address Q1. In order to address
Q2, a notion of locality may be introduced through use of
self-information. For a given realization x of a random variable
X ∼ pX , the self-information is given by h(x) , − log pX(x)
and represents the amount of surprise associated with that
realization. By replacing entropy with self-information, and
its conditional form h(x | y) , − log pX|Y (x | y), a local
version of DI and its conditional extension may be obtained
(see Table 1 in [29] for other so-called “local measures”). As
an example, we note that for a given pair of realizations xi

and yi−1, a “directed information density” (using the language
of [30]) may be given by:

i(yn−1 → xn) =
n∑
i=1

log
p(xi | xi−1, yi−1)

p(xi | xi−1)
(18)

While this indeed creates a sample path measure of causality
whose expectation is DI, it is clear it may take on negative
values. Such a scenario occurs when the knowledge that
Y i−1 = yi−1 makes the observation of Xi = xi less likely
to have occurred. While self-information measures are a good
candidate for beginning to address Q2 given their dependence
upon realizations, the potential for negative values creates
difficulty in trying to obtain an easily interpretable answer
in all cases.
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E. Time-Varying Causal Measures

A popular extension of GC style causal measures is appli-
cation to time-varying scenarios [31], [32]. In order to adapt
existing methods to these types of scenarios, it is necessary
to evaluate them over stretches of time for which there is
stationarity. As such, estimation in this scenario necessitates
some sort of sliding window technique in order to approximate
an expectation, giving rise to a trade-off between sensitivity
to dynamic changes and accuracy. Despite being concerned
with time-varying causal influences, these approaches are
still ultimately attempts to answer Q1 in that the quantity
being estimated is determined solely by the underlying joint
distribution. The temporal variability that is measured by these
approaches is a result only of potential non-stationarities. This
is fundamentally different from the question we are asking,
which is concerned with the dynamic causal influences that
are associated with a particular realization of a process that
may or may not be stationary.

III. A SAMPLE PATH MEASURE OF CAUSAL INFLUENCE

We begin by considering the scenario where, having ob-
served (xi−1, yi−1, zi−1), we wish to determine the causal
influence that yi−1 has on the next observation of Xi. De-
fine the restricted (denoted (r)) and complete (denoted (c))
histories as:

H(r)
i , {x1, . . . , xi−1} ∪ {z1, . . . , zi−1}
H(c)
i , H(r)

i ∪ {y1, . . . , yi−1}

The current time samples of side information from the histories
(i.e. yi and zi) are intentionally omitted, as we assume
that there is no instantaneous coupling. We next define the
restricted and complete conditional distributions as:

p
(r)
Xi

(xi) , pXi
(xi | H(r)

i )

p
(c)
Xi

(xi) , pXi(xi | H
(c)
i ).

Using these distributions, the sample path causal measure from
Y to X in the presence of side information Z at time i is
defined by:

CY→X(H(c)
i ) , D(p

(c)
Xi
|| p(r)Xi

) (19)

For ease of notation, we may refer to the causal measure at
time i simply as CY→X(i).

The proposed causal measure has an interesting relationship
to the directed information. To illustrate this, consider the
conditional mutual information term that appears in the sum
in (10), along with two equivalent representations:

I(Y i−1;Xi | Xi−1)

= H(Xi | Xi−1)−H(Xi | Xi−1, Y i−1) (20)

= EXi,Y i−1

[
log

p(Xi | Xi−1, Y i−1)

p(Xi | Xi−1)

]
(21)

These equivalent definitions of directed information yield
two interpretations. While (20) considers the reduction in
uncertainty obtained by conditioning on Y i−1, (21) considers
the change in the distribution resulting from the added condi-
tioning as measured by a log-likelihood ratio. When we wish

to condition on a realization (Xi−1, Y i−1) = (xi−1, yi−1),
these representations are no longer equivalent:

H(Xi | xi−1)−H(Xi | xi−1, yi−1) (22)
6=

EXi

[
log

p(Xi | xi−1, yi−1)

p(Xi | xi−1)

∣∣∣∣xi−1, yi−1] (23)

The representation given by (23) is chosen to be the sample
path causal measure and is indeed equivalent to the proposed
measure in (19). This choice is made clear by noting two prop-
erties of (22). First, we note that (22) may be negative. Second,
for particular realizations of xi−1 and yi−1, we may have that
conditioning on yi−1 drastically shifts the distribution of Xi

while only mildly affecting the conditional entropy, yielding a
value of nearly zero for a scenario when there is a clear causal
influence. We note that the difference between definitions
of DI that is induced by conditioning on a realization is
acknowledged in [28], where four unique estimators of DI
are proposed based on these various equivalent definitions of
DI. While these estimators converge to the same result in
the estimation of DI, the different perspectives yield different
results for the question we are addressing and thus their
implications must be considered.

As a result of the added conditioning, the proposed measure
is a random variable that takes on a value for each possible
history and may be related to the directed information as
follows:

Proposition 1. In the absence of instantaneous influences,
the sum of the expectation over sample paths of the proposed
causal measure is the directed information:

n∑
i=1

E[CY→X(H(c)
i )] = I(Y n−1 → Xn || Zn−1) (24)

See Appendix D-A for a proof of the proposition.
A second key property of the proposed measure is non-

negativity (for any history), which follows directly from the
properties of the KL-divergence. Furthermore, the measure
will take a value of zero if and only if the complete and
restricted distributions are equivalent for a given history. As
such, the proposed causal measure may take on a large value
when the additional condition on yi−1 introduces a large
amount of uncertainty into the distribution of Xi. In such a
scenario, we would expect yi−1 to have a significant causal
influence on Xi even though it is not causing Xi to take on
a specific value. It is this type of scenario that makes Q2 so
difficult to answer in a consistent manner, despite having a
clear interpretation in terms of Q3.

Remark 1. Despite the fact that Granger’s perspective on
causal influence includes no remarks on the role of interven-
tions, it may be of interest to consider a version of the proposed
measure where the value of the influencer is forced by means
of an intervention2. For example, one might wish to consider:

C
(i)
Y→X(H(c)

i ) , D(p
(i)
Xi
|| p(r)Xi

) (25)

2We thank an anonymous reviewer for this suggestion.
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where the first argument of the divergence is defined as the
interventional distribution:

p
(i)
Xi

(xi) , p(xi | H(r)
i , do(Y i−1 = yi−1)) (26)

We have here used the do-operator of Pearl [7] to represent
the action of forcing Y i−1 to take the values yi−1 irrespective
of the probability with which those values occur. Given that
it is often infeasible to perform such interventions in real
world scenarios, a large body of causality research is focused
on determining when these interventional distributions can
be learned from observed data. While providing a general
characterization of the scenarios for which C(i)

Y→X = CY→X
is outside the scope of this paper, this equivalence does in fact
hold for the three examples in the following section (with a
mild technical assumption). This follows intuitively from the
depictions in Figure 1 and is shown formally in Appendix A. By
contrast, we would not expect this equivalence to hold for the
stock market example considered in Section V-B, as discussed
in Remark 2.

A. Justification for Measurement of Sample Path Influences

We now present a series of examples that illustrate the value
of a sample path causal measure. Graphical representations of
the three examples can be seen in Figure 1.

1) IID Influences: Let Yi ∼ Bern(ε) iid for i = 1, 2, . . .
and:

Xi ∼

{
Bern(p1), Yi−1 = 1

Bern(p2), Yi−1 = 0
(27)

for ε, p1, p2 ∈ [0, 1]. Intuitively, the extent to which Yi−1
influences Xi will vary for different values yi−1 provided that
p1 6= p2. In order to compute the causal measure CY→X(i),
we first need to find the restricted distribution of Xi given
only its own past:

p
(r)
Xi

(1) = P(Xi = 1|Xi−1 = xi−1)

= P(Xi = 1)

=
∑

yi−1∈{0,1}

P(Xi = 1 | Yi−1 = yi−1)P(Yi−1 = yi−1)

= p1ε+ p2(1− ε).

Noting that p(c)Xi
(1) = p1 when yi−1 = 1 and p

(c)
Xi

(1) = p2
when yi−1 = 0, the causal measure is given by:

CY→X(i) =

{
D(p1 || p1ε+ p2(1− ε)), yi−1 = 1

D(p2 || p1ε+ p2(1− ε)), yi−1 = 0

Thus, we see that as ε→ 0,

CY→X(i)→

{
D(p1 || p2), yi−1 = 1

0, yi−1 = 0

By contrast, the DI rate is given by taking the expectation of
CY→X(i) over possible values Yi−1. Defining CY→X(i) ,
CY→X(yi−1), we get:

Ī(Y → X) = CY→X(1)ε+ CY→X(0)(1− ε) ε→0−−−→ 0

As a result, it is clear that the sample paths that occur with
lower probability will give rise to a greater causal measure than

those that occur with higher probability; however, as a result
of their lesser probability, these infrequent, highly influential
events will have little influence in the computation of the DI
rate.

We further note that while it is tempting to invoke “con-
ditioning reduces entropy” to conclude that CY→X(i) > 0
represents a reduction in uncertainty that is obtained by
including the past yi−1 in the prediction of Xi, this is not the
case. To make this clear, assign values p1 ≈ 0.5 and p2 ≈ 1
in (27) and again let ε approach zero. In such a scenario, we
find that:

p
(r)
Xi

(1) ≈ 1

p
(c)
Xi

(1) ≈

{
1, yi−1 = 1 (w.p. 1− ε)
0.5, yi−1 = 0 (w.p. ε)

As such, it is clear that by additionally conditioning on yi−1 =
0, there is a considerable increase in uncertainty. Thus, while
it is certainly true that H(Xi | Xi−1) ≤ H(Xi | Xi−1, Y i−1),
there are scenarios in which a particular realization of Y i−1

may cause uncertainty in Xi. Revisiting Q2, it is not clear how
to answer the extent to which the event {Yi−1 = 0} causes any
particular outcome {Xi = xi}, because all possible outcomes
are equally likely. On the other hand, if we consider Q3, it is
quite clear that the event {Yi−1 = 1} has significant influence
on Xi and that this is reflected by the proposed measure.

2) Perturbed Cross Copying: We next consider a scenario
where two processes repeatedly swap values. This example
was originally posed in [33] and modified to include noise in
[26]. Formally, the processes may be defined as:

Xi =

{
Yi−1, w.p. 1− ε
Yi−1 ⊕ 1, w.p. ε

Yi =

{
Xi−1, w.p. 1− ε
Xi−1 ⊕ 1, w.p. ε

(28)
where Xi, Yi ∈ {0, 1} for all i and ⊕ is the XOR operator. We
again consider the limiting case where ε is taken to approach
zero. As is shown in [26], the DI rate approaches zero as
ε → 0. This results from the fact that for very small ε, Yi−1
on average contains virtually no information about Xi that is
not contained in Xi−2.

Janzing et al. [26] note that because Xi and Xi−2 are
independent given Yi−1, Yi−1 should, in some sense, be
fully responsible for the information that is known about Xi.
As a result, for this example their proposed causal strength
measures the average reduction in uncertainty obtained by
conditioning on Yi−1 versus conditioning on nothing at all,
i.e. CY→X = D(ε || 0.5)→ 1 as ε→ 0 (under the assumption
the X and Y are initiated by fair coin tosses).

Next, we consider our proposed sample path measure. First,
we note that the complete distribution of Xi depends only
upon yi−1 and the restricted distribution depends only upon
xi−2. Explicitly, we get the following distributions:

p
(c)
Xi

(xi) =

{
1− ε xi = yi−1

ε xi 6= yi−1

p
(r)
Xi

(xi) =

{
ε2 + (1− ε)2 xi = xi−2

2ε(1− ε) xi 6= xi−2
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Fig. 1. Graphical representation of the IID influences (left), perturbed cross copying (center), and horse betting (right) examples

As a result, we see that for a given complete history H(c)
i =

{xi−2, yi−1} we get:

CY→X(H(c)
i ) =

{
D(ε || 2ε(1− ε)), xi−2 = yi−1

D(ε || ε2 + (1− ε)2), xi−2 6= yi−1

Thus, we see that as ε→ 0, CY→X → 0 if xi−2 = yi−1 and
CY→X →∞ otherwise.

A comparison of the three measures makes clear that each
provides a slightly different perspective. DI rate is loyal to
the Granger’s perspective in that it captures how, as ε → 0,
Yi−1 contains less and less information about Xi that is not
already known. As a result Ī(Y → X) is strictly decreasing
for decreasing ε. Causal strength, on the other hand, is loyal
to the causal Markov condition in the sense that it restricts
consideration to only the immediate parents of the node in
question (see P2 in Section 2 of [26]). As such, decreasing
ε yields a smaller level of uncertainty in Xi conditioned on
Yi−1, and therefore the causal strength is strictly increasing
for decreasing ε. The proposed measure lies somewhere in
between the two in that it simultaneously captures the decrease
and increase in effect of Y on X as ε shrinks. Deciding which
perspective is “correct” is a philosophical question that must
be answered on a problem-by-problem basis. In any case, the
proposed measure provides an interesting perspective that, to
our knowledge, has not been considered in the literature.

3) Horse Betting: Consider the problem of horse race
gambling with side information as presented in Section III-
A of [34] (with minor adjustments to notation). At each time
i the gambler bets all of their wealth based on the past winners
Xi−1 ∈ [M ]i−1 and side information Y i−1. As a result,
the gambler’s wealth at time i, denoted w(Xi, Y i−1), is a
function of the winning horses and side information up to that
time. Lastly, the amount of money that is won for betting
on the winning horse is given by the odds o(Xi | Xi−1),
and the portion of wealth bet on each horse is given by
b(Xi | Xi−1, Y i−1) ≥ 0 with

∑
x b(x | Xi−1, Y i−1) = 1 .

Thus, the evolution of the wealth can be described recursively
as:

w(Xi, Y i−1)

= b(Xi | Xi−1, Y i−1)o(Xi | Xi−1)w(Xi−1, Y i−2)

Finally, the expected growth rate of the wealth is defined as
1
nE[logw(Xn, Y n−1)].

It is shown in [34] that the betting strategy that maximizes
the expected growth rate is given by distributing bets accord-
ing to the conditional distribution of Xi given all available
information:

b∗(Xi | Xi−1, Y i−1) = p(Xi | Xi−1, Y i−1).

Similarly, we can define a restricted betting strategy b(Xi |
Xi−1) where the side information is not available (and optimal
strategy b∗(Xi | Xi−1) = p(Xi | Xi−1)). The wealth that is
obtained under that strategy is then given by:

w(Xi) = b(Xi | Xi−1)o(Xi | Xi−1)w(Xi−1)

Letting w∗(Xi, Y i−1) and w∗(Xi) represent the wealth result-
ing from using the optimal strategies, it is further shown in
[34] that the increase in growth rate resulting from including
side information in the betting strategy is given by:

1

n
E
[
logw∗(Xn, Y n−1)− logw∗(Xn)

]
=

1

n
I(Y n−1 → Xn)

(29)
It should be noted that the result in (29) holds for any choice
of odds o(Xi | Xi−1). Thus, we proceed by making the mild
assumption that the odds chosen by the racetrack are such that,
for any past sequence of winners xi−1, the gambler optimally
betting without side information is expected to lose money on
round i:

E[log b∗(Xi | Xi−1)o(Xi | Xi−1) | xi−1] = log δ < 0 (30)

for some 0 < δ < 1. We define the above equation as
the conditional expected growth rate for race i (without
side information). As a consequence, this implies a negative
expected growth rate for the gambler’s wealth without side
information:

E[logw∗(Xn)]

= E[log b∗(Xn | Xn−1)o(Xn | Xn−1)] + E[logw∗(Xn−1)]

=
n∑
i=1

E[log b∗(Xi | Xi−1)o(Xi | Xi−1)] + logw0

= n log δ < 0

where the initial wealth w0 is assumed, without loss of
generality, to be 1.

It follows that a gambler with access to side information
ought to gamble only if their expected growth rate is greater
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than zero. Applying this condition to (29), a gambler with side
info can expect to win money if:

1

n
I(Y n−1 → Xn) > − log δ (31)

Thus, when equipped with the DI, a gambler will decide
either to visit the racetrack and bet on every race or to stay at
home. It turns out, however, that the gambler may be doing
themselves a disservice by staying home any time that (31)
does not hold. To see this, suppose that before race i the
gambler has witnessed winners xi−1 and side information
yi−1, and wishes to gamble if they expect to make money on
the current race. Such a scenario occurs when the conditional
expected growth rate for round i is positive:

E[log b∗(Xi | Xi−1, Y i−1)o(Xi | Xi−1) | xi−1, yi−1] > 0
(32)

Combining (32) with the rate for round i in (30), the condition
for which the gambler should place a bet becomes:

E[log b∗(Xi | Xi−1, Y i−1)− log b∗(Xi | Xi−1) | xi−1, yi−1]

=
∑
xi

p(xi | xi−1, yi−1) log
b∗(xi | xi−1, yi−1)

b∗(xi | xi−1)

=
∑
xi

p(xi | xi−1, yi−1) log
p(xi | xi−1, yi−1)

p(xi | xi−1)

= CY→X(xi−1, yi−1)

> − log δ

Thus we can see that while the DI represents the time
averaged expected increase in wealth growth rate resulting
from side information, the proposed measure gives the per
round expected increase. It is important to note that with
problems in communication theory, low probability events may
indeed be of little concern, and thus the DI may be the correct
technique with which to analyze the relationship between Y
and X . In the case of betting and the applications discussed
in Section V-B, we note that there may be great interest in
how the two time series interact for specific realizations, even
if those realizations are rare.

IV. ESTIMATING THE CAUSAL MEASURE

An estimate of the causal measure can be obtained by
simply estimating the complete and restricted distributions
and then computing the KL divergence between the two at
each time. Such an estimator allows us to leverage results
from the field of sequential prediction [35]. The sequential
prediction problem formulation we consider is as follows: for
each round i ∈ {1, . . . , n}, having observed some history Hi,
a learner selects a probability assignment p̂i ∈ P , where P
is the space of probability distributions over X . Once p̂i is
chosen, xi is revealed and a loss l(p̂i, xi) is incurred by the
learner, where the loss function l : X → R is chosen to be the
self-information loss given by l(p, x) = − log p(x).

The performance of sequential predictors may be assessed
using a notion of regret with respect to a reference class of
probability distributions P̃ ⊂ P . For a given round i and
reference distribution p̃i ∈ P̃ , the learner’s regret is:

r(p̂i, p̃i, xi) = l(p̂i, xi)− l(p̃i, xi) (33)

In many cases the performance of sequential predictors will
be measured by the worst case regret, given by:

Rn(P̃n) = sup
xn∈Xn

n∑
i=1

l(p̂i, xi)− inf
p̃∈P̃n

n∑
i=1

l(p̃i, xi) (34)

, sup
xn∈Xn

n∑
i=1

r(p̂i, f
∗
i , xi) (35)

where p∗i ∈ P̃ is defined as the distribution from the reference
class with the smallest cumulative loss up to time n, i.e. the p̃i
for which Rn is largest. We also define p∗ ∈ P̃n ⊂ Pn to be
the cumulative loss minimizing joint distribution, noting that
the reference class of joint distributions P̃n is not necessarily
equal to P̃n (i.e. P̃ × P̃ × . . . ), as often times there may be
a constraint on the selection of the best reference distribution
that is imposed in order to establish bounds. In the absence of
any restrictions, the reference distributions may be selected at
each time such that p∗i (xi) = 1, resulting in zero cumulative
loss for any sequence xn. Thus, sequential prediction problems
impose restrictions on the reference distributions with which
to compare predictor performance [35]. For example, one may
assume stationarity by enforcing p∗1 = p∗2 = · · · = p∗n or
assume that p∗i = p∗i+1 for all but some small number of
indices. For various learning algorithms (i.e. strategies for
selecting p̂i given Hi) and reference classes P̃n, these bounds
on the worst case regret are defined as a function of the
sequence length n:

Rn(P̃n) ≤M(n) (36)

It follows naturally that an estimator for our causal measure
can be constructed by building two sequential predictors. The
restricted predictor p̂(r)Xi

computed at each round using H(r)
i ,

and the complete predictor p̂(c)Xi
computed at each round using

H(c)
i . It then follows that each of these predictors will have

an associated worst case regret, given by R
(r)
n (P̃(r)

n ) and
R

(c)
n (P̃(c)

n ), where P̃(r)
n and P̃(c)

n represent the restricted and
complete reference classes. Using these sequential predictors,
we define our estimated causal influence from Y to X at time
i as:

ĈY→X(i) = D(p̂
(c)
Xi
|| p̂(r)Xi

) (37)

It should be noted that when averaged over time, this estimator
becomes a universal estimator of the directed information rate
for certain predictors and classes of signals [28].

To assess the performance of an estimate of the causal
measure, we define a notion of causality regret:

CR(n) ,
n∑
i=1

∣∣∣ĈY→X(i)− C∗Y→X(i)
∣∣∣ (38)

where we define:

C∗Y→X(i) = D(p
(c)∗
Xi
|| p(r)∗Xi

) (39)

with p
(c)∗
Xi

∈ P̃(c) and p
(r)∗
Xi

∈ P̃(r) defined as the loss
minimizing distributions from the complete and restricted
reference classes. We note that with this notion of causal
regret, the estimated causal measure is being compared against
the best estimate of the causal measure from within a reference
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class. As such, we limit our consideration to the scenario
in which the reference classes are sufficiently representative
of the true sequences to produce a desirable C∗Y→X (i.e.
C∗Y→X(i) ≈ CY→X(i) for all i).

We now present the necessary assumptions for proving a
finite sample bound on the estimates of causality regret.

Assumption 1. For sequential predictors p̂(c)Xi
and p̂

(r)
Xi

and
observations (xn, yn, zn) ∈ Xn × Yn × Zn, we assume that
p̂
(c)
Xi

and p̂
(r)
Xi

are absolutely continuous with respect to each
other, i.e.:

sup
x∈X

∣∣∣∣∣log
p̂
(c)
Xi

(x)

p̂
(r)
Xi

(x)

∣∣∣∣∣ <∞ i = 1, . . . , n (40)

Clearly, the above assumption will be satisfied for any sequen-
tial prediction algorithm that does not assign zero probability
to any outcomes.

Assumption 2. For loss minimizing distributions p(c)∗Xi
∈ P̃(c)

and p
(r)∗
Xi

∈ P̃(r), restricted sequential predictor p̂
(r)
Xi

, and
observations (xn, yn, zn) ∈ Xn × Yn ×Zn:

n∑
i=1

∣∣∣∣Ep(c)∗Xi

[
r(p̂

(r)
Xi
, p

(r)∗
Xi

, Xi)
]∣∣∣∣ ≤M (r)(n) (41)

While it is understood that the expected regret is in general
bounded by worst case regret, Assumption 2 requires that the
reference classes are sufficiently rich that the expected regret is
not too large in absolute value. This is necessary in bounding
the causality regret because unlike the regret defined by (34),
CR(n) increases when the estimated distributions outperform
the regret minimizing distributions.

We now present our main theoretical result, a finite sample
bound on the causality regret under Assumptions 1 and 2:

Theorem 1. Let the worst case regret for the predictors
p̂
(r)
Xi

and p̂
(c)
Xi

be bounded by R
(r)
n (P̃(r)

n ) ≤ M (r)(n) and
R

(c)
n (P̃(c)

n ) ≤ M (c)(n), respectively. Then, for any collection
of observations (xn, yn, zn) ∈ Xn × Yn × Zn satisfying
Assumptions 1 and 2, we have:

CR(n) ≤M (c)(n) +M (r)(n) +
||~cn||2√

2

√
M (c)(n). (42)

where ~cn = [c1, . . . , cn] is a vector with elements:

ci =
∑
x∈X

∣∣∣∣∣log
p̂
(c)
Xi

(x)

p̂
(r)
Xi

(x)

∣∣∣∣∣ (43)

A proof of the theorem may be found in Appendix E-A. We
note that because each ci depends solely on the estimated com-
plete and restricted distributions, a finite sample bound may
be computed at each point in time. If we make the additional
assumption that the absolute log ratio of our complete and
restricted predictors is bounded:

sup
x∈X

∣∣∣∣∣log
p̂
(c)
Xi

(x)

p̂
(r)
Xi

(x)

∣∣∣∣∣ ≤ L i = 1, 2, . . . (44)

then we can simplify the bound by observing that:

||~cn||2 ≤ L |X |
√
n. (45)

When such a scenario holds, we can make use of the following
Corollary to Theorem 1 regarding the asymptotic behavior of
the causality regret:

Corollary 1. Let the worst case regret for the predictors p̂(r)Xi

and p̂
(c)
Xi

be sublinear in n and the absolute log ratio of the
complete and restricted sequential predictors be bounded as
in (44). Then, under Assumptions 1 and 2, for any collection
of observations (xn, yn, zn) ∈ Xn × Yn × Zn, the causality
regret will be sublinear in n:

lim
n→∞

1

n
CR(n) = 0 (46)

Lastly, we note that in the special case where the true com-
plete and restricted distributions are in the reference classes
(i.e. p(r)Xi

∈ P̃(r) and p(c)Xi
∈ P̃(c)), then under an appropriately

modified Assumption 2 with p(c)Xi
and p(r)Xi

substituted for p(c)∗Xi

and p(r)∗Xi
, we have that:

n∑
i=1

∣∣∣ĈY→X(i)− CY→X(i)
∣∣∣ ≤ CR(n). (47)

While in practice it is not expected that we would know
whether or not the true underlying distribution is in a particular
class of reference distributions, this observation will be used
in performing simulations in Section V-A.

A. Addressing Infinite Order Restricted Models

It is clear that the proposed causality regret only serves
as a meaningful metric of estimation accuracy insofar as
the reference class optimal causal measure C∗Y→X serves
as a useful proxy for the true causal measure CY→X . This
consideration is not unique to the proposed causal measure.
In an extensive analysis of problems encountered when using
Granger causality, [23] describes a bias-variance tradeoff that
results from the fact that subsets of VAR models will in
general be of infinite order even if the complete VAR model
is finite order. In the context of our estimation framework,
this tradeoff lies in the selection of reference classes P̃(r)

n

and P̃(c)
n , which need to be rich enough to yield sufficiently

good C∗Y→X but not so rich that there do not exist sequential
prediction methods for which low cumulative regret may be
achieved. This issue appears in numerous forms throughout the
DI literature. In particular, in order to reliably estimate the DI,
it is typically assumed that in addition to all processes being
jointly d-Markov, the subset of processes that does not include
the directed information source is itself d-Markov [28], [32],
[36]–[38]. In the present context, this equates to assuming
that (i) X , Y , and Z are jointly d-Markov and (ii) X is
“conditionally d-Markov given Z,” i.e. p(Xi | Xi−1, Zi−1) =
p(Xi | Xi−1

i−d , Z
i−1
i−d). While these assumptions are widely

utilized to establish performance guarantees of DI estimators,
their implications on the nature of the relationship between X
and Y is absent in the literature. Thus, we seek to identify
when stationary jointly Markov processes X , Y , and Z are
such that X is conditionally Markov given Z. It should be
noted that, by letting Z = ∅, the following results can be
extended to the standard setting consisting of only X and Y .
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To understand the conditions under which the desired in-
dependence relationships hold, we can leverage tools from
Bayesian networks, which can be used to represent con-
ditional independencies in collections of random variables
using a directed acyclic graph (DAG) G = (V,E), where
V = {V1, . . . , Vm} is a set of random variables (equivalently
nodes or vertices) and E ⊂ V × V is a set of directed edges
that it do not contain any cycles [39]. The parent set of a
node Vi in a DAG is defined as the set of nodes with arrows
going into Vi, Pi , {Vj : (Vj → Vi) ∈ E}. The defining
characteristic of a Bayesian network representation of a joint
distribution over the nodes V ∼ p is the ability to factorize
the distribution as:

p(V ) =
m∏
i=1

p(Vi | Pi). (48)

If this factorization holds for a given p and G, we say G is
a Bayesian network for p. A key concept when working with
Bayesian networks is the d-separation criterion, which is used
to identify subsets of nodes whose conditional independence
is implied by the graphical structure. In particular, when given
three disjoint subsets of nodes A,B,C ⊂ V in a graph G, a
straightforward algorithm (shown in Algorithm 1) can be used
to determine if C d-separates A and B. When C d-separates
A and B, then for any joint distribution p(V ) such that G
is a Bayesian network for p, A and B will be conditionally
independent given C. While the converse is not true in general
(i.e. independence does not imply d-separation), it has been
shown that for specific classes of Bayesian networks, the
set of parameters for which the converse does not hold has
Lebesgue measure zero [39], [40]. When a graph G and joint
distribution p are such that d-separation holds if and only if
conditional independence holds for all subsets of nodes, then
the distribution p is called “faithful” to G [39].

Algorithm 1 d-Separation [41]
Input: DAG G = (V,E) and disjoint sets A,B,C ⊂ V

1: Create a subgraph containing only nodes in A, B, or C
or with a directed path to A, B, or C

2: Connect with an undirected edge any two variables that
share a common child

3: For each c ∈ C, remove c and any edge connected to c
4: Make every edge an undirected edge
5: Conclude that A and B are d-separated by C if and only

if there is no path connecting A and B

A Bayesian network is a very natural representation for
collections of Markov processes. In particular, using the chain
rule to factorize the joint distribution over n time steps of the
processes (X,Y, Z) yields:

p(Xn, Y n, Zn) =
n∏
i=1

p(Xi, Yi, Zi | Xi−1
i−d , Y

i−1
i−d , Z

i−1
i−d).

(49)
Assuming that there are no instantaneous influences facilitates
construction of a Bayesian network, as we can rely on the
arrow of time to determine the direction of arrows in the

network. In the presence of instantaneous influences, we
cannot construct a unique Bayesian network representation
of Markov processes without making alternative assumptions.
This is similar reasoning to that of [38], where the absence of
instantaneous influences is used to establish the equivalence
between DI graphs and minimal generative model graphs.
Under this assumption, we can further simplify (49) as:

p(Xn, Y n, Zn) =
n∏
i=1

∏
S∈{Xi,Yi,Zi}

p(S | Xi−1
i−d , Y

i−1
i−d , Z

i−1
i−d).

(50)
Comparing (48) and (50), it is clear that we can represent
a collection of processes as a Bayesian network by letting
each node be a single time point of a process (i.e. Xi, Yi,
or Zi) with parents PXi

,PYi
,PZi

⊆ {Xi−1
i−d , Y

i−1
i−d , Z

i−1
i−d}.

Given that there may be multiple valid Bayesian networks for a
particular distribution, we note that Xi, Yi, and Zi may not be
conditionally dependent on the entire set {Xi−1

i−d , Y
i−1
i−d , Z

i−1
i−d}.

Thus, when constructing a Bayesian network for (X,Y, Z)
we include an edge Si−k → S′i for S, S′ ∈ {X,Y, Z} and
k = 1, . . . , d only if:

I(Si−k;S′i | {Xi−1
i−d , Y

i−1
i−d , Z

i−1
i−d} \ Si−k) > 0. (51)

Using the Bayesian network construction given by (51), we
can leverage the d-separation criterion to gain a better un-
derstanding of the types of conditions which give rise to the
conditional independence relationships needed for DI estima-
tion. To start, we identify necessary and sufficient conditions
for which Xi will be d-separated from (Xi−l−1, Zi−l−1) by
(Xi−1

i−l , Z
i−1
i−l ):

Theorem 2. Let (X,Y, Z) be a collection of jointly stationary
d-Markov processes such that there are no instantaneous
influences. If I(Y n → Xn || Zn) = 0, then X is conditionally
d-Markov given Z. If I(Y n → Xn || Zn) > 0, X is
conditionally Markov given Z of order 2d or less if:

I(Yj ;Yk | Xi, Zi) = 0 ∀j ≤ k ≤ i (52)

If I(Y n → Xn || Zn) > 0 but (52) is not satisfied, there
will not exist any positive integer l such that (Xi−1

i−l , Z
i−1
i−l ) d-

separates Xi from (Xi−l−1, Zi−l−1) in the Bayesian network
generated according to (51).

A proof of the theorem can be found in Appendix E-B. The
implication of this theorem is that the desired d-separation
criteria only occurs when no two time points of Y directly
influence each other and Xi is only causally influenced by
a single Yj for some j ≤ i. In particular we note that this
excludes jointly stationary d-Markov processes aside from the
special case where p(Yi | Xi−1

i−d , Y
i−1
i−d ) = p(Yi | Xi−1

i−d) and
p(Xi | Xi−1

i−d , Y
i−1
i−d ) = p(Xi | Xi−1

i−d , Yi−τ ) for some 0 ≤ τ ≤
d.

Theorem 2 uses d-separation to provide us with a char-
acterization of networks of processes that are guaranteed
to have the conditional independence relations required by
DI estimators. With regard to the processes for which we
cannot demonstrate d-separation (i.e. those not satisfying (52)),
the only distributions that will have the desired conditional
independence relations are those that are unfaithful to their
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graphs. While there is ample discussion in the literature noting
that these distributions are typically not seen in practice (see
[39] and citations therein), a formal characterization within the
present context is desired.

Theorem 3. The set of parameters defining a collection
(X,Y, Z) of jointly stationary irreducible aperiodic Markov
processes such that there exists a positive integer l where X
is conditionally l-Markov given Z but (Xi−1

i−l , Z
i−1
i−l ) does not

d-separate Xi from (Xi−l−1, Zi−l−1) in the Bayesian network
constructed by (51) has Lebesgue measure zero with respect
to RN .

A proof of the theorem is given in Appendix E-C.
This observation is not to detract from the literature on

the estimation and application of DI, but rather to extend
the concerns expressed in [23] to the information theoretic
analogues of Granger causality. The issue arises not from
the estimators themselves, but rather from the properties of
d-separation in causal models. When X is not marginally
Markov, any plug-in estimator that requires an estimate of p(r)Xi

will necessitate approximation of an infinite order model and
therefore introduce a bias-variance tradeoff.

The most relevant previous work in this area was in [42],
where the performance of plug-in estimators of DI were
analyzed. It was noted in this work that in scenarios where
X is not marginally Markov, the finite order approximation
is nevertheless interesting, in particular because it serves
as an upper bound for the DI. Moreover, it is shown that
this approximate measure may be reliably estimated even in
scenarios where X is not marginally Markov.

We now propose a second alternative to DI for which
reliable estimates may be obtained when X is not marginally
Markov. The proposed measure is complementary to that
proposed in [42] in that it serves as a lower bound for the DI.
In order to avoid dependence on an infinite past, we consider
conditioning on a “stale” history:

Theorem 4. Let (X,Y ) ∼ p be a jointly stationary irreducible
aperiodic finite-alphabet d-Markov process. For a fixed k,
define X̃i , (Xi, Yi−k+1). Then X̃ is a jointly stationary
irreducible aperiodic (d+k)-Markov process and the following
equality holds:

p(Xi | Xi−1, Y i−k) = p(Xi | Xi−1
i−k−d, Y

i−k
i−k−d). (53)

The above theorem states that so long as the distribution of
Xi is conditioned upon its own past and any d consecutive
samples of Y , then it is independent of all X and Y that
precede those samples of Y . The proof of the theorem may
be found in Appendix E.

It follows that by conditioning on some stale past of Y , a
proxy for DI may obtained. Formally, define the partial history
with lag (or staleness) k to be:

H(k)
i , H(r)

i ∪ {y1, . . . , yi−k}. (54)

Similarly, define the partial conditional distribution:

p
(k)
Xi

(xi) , p(xi | H(k)
i ). (55)

We note that the partial conditional distribution is a gener-
alization of the complete and restricted distributions in that
p
(1)
Xi

= p
(c)
Xi

and p
(i)
Xi

= p
(r)
Xi

. Finally, we define the partial
causal measure with lag k to be:

C
(k)
Y→X(H(c)

i ) , D(p
(c)
Xi
|| p(k)Xi

) (56)

This sample path dependent measure may be related to the
model dependent measures by defining a partial DI (PDI) and
PDI rate:

I(Y n−1n−k → Xn) ,
n∑
i=1

E
[
C

(k)
Y→X(H(c)

i )
]

(57)

Ī
(k)
P (Y → X) , lim

n→∞

1

n

n∑
i=1

I(Y n−1n−k → Xn) (58)

Much like the DI (rate), the PDI (rate) can be represented as
a difference of entropies (rates):

I(Y n−1n−k → Xn) = H(Xn || Y n−k−1)−H(Xn || Y n−1)
(59)

Ī
(k)
P (Y → X) = H̄(k−1)(X || Y )− H̄(1)(X || Y ) (60)

where we have replaced the first entropy terms on the right
hand side of (11) and (13) with a lagged causally conditioned
entropy.

The partial causal measures of (56), (57), and (58) have
straightforward interpretations in relationship to their complete
counterparts. In particular, we note that these measures can be
viewed as measuring the causal effect of the recent past of
Y on X . Additionally, the PDI serves as a lower bound for
DI. Therefore, effectively estimating the PDI for scenarios in
which we do not have a universal estimator of the DI may be
of great interest. The estimators of [28] can be extended to be
universal estimators of the PDI rate:

Theorem 5. Let (X,Y ) ∼ p be a jointly stationary irreducible
aperiodic finite-alphabet Markov process of order d or less.
Let p̂(c)Xi

be a depth-d CTW estimate of p(c)Xi
with access to H(c)

i

and p̂(k)Xi
be a depth-(d+k) CTW estimate of p(k)Xi

with access
to H(k)

i . Then:

lim
n→∞

1

n

n∑
i=1

D(p̂
(c)
Xi
|| p̂(k)Xi

) = Ī
(k)
P (Y → X) pXn,Y n − a.s.

(61)

The proof of the theorem may be found in Appendix E. We
note that this theorem is analogous with Theorem 3 from [28],
where here we have removed any assumptions about how X
behaves marginally. It should also be noted that here we are
only considering one of four estimators proposed by [28].
Presumably, similar results could be obtained for the other
estimators, though this is not the primary concern of this work.

As a final point, we note that by combining the PDI and the
work of [42], we can reliably estimate upper an lower bounds
of DI for jointly Markov processes regardless of whether or
not the sub-processes are themselves marginally Markov:
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Proposition 2. Let (X,Y ) be a jointly stationary Markov
process of order d. Define the truncated DI (TDI) rate of order
k as:

Ī
(k)
T (Y → X) , lim

n→∞

1

n

n∑
i=1

I(Xi;Y
i−1
i−k | X

i−1
i−k). (62)

Then for k1 ≥ 1 and k2 ≥ d, we have:

Ī
(k1)
P (Y → X) ≤ Ī(Y → X) ≤ Ī(k2)T (Y → X) (63)

with both bounds becoming equalities as k1 and k2 approach
infinity.

The proof of the proposition is given in Appendix D-B. It
should be noted that, in a scenario where both joint and
marginal Markovicity hold, the TDI and DI rates are equiv-
alent. We have here simply renamed the TDI to emphasize
that, in many cases, they are in fact not equivalent. The
implication of this proposition is that, for the large class
of jointly Markov processes for which the sub-processes are
not marginally Markov (as characterized by Theorems 2 and
3), we can avoid the bias-variance tradeoff resulting from
using truncated approximations of infinite-order models by
reliably estimating bounds on DI rather than the DI itself. In
particular, the quantity that is estimated under the assumption
that X is marginally Markov (given by (62)) provides a lower
bound, and the PDI resulting from conditioning on a stale
history provides an upper bound. Furthermore, both of these
quantities can be reliably estimated, as demonstrated by [42]
and Theorem 5.

V. RESULTS

A. Stationary Markov Processes

We begin by demonstrating estimation of the causal measure
for simulated stationary first order Markov processes using a
context tree weighting (CTW) sequential prediction algorithm
[43]. For the purpose of estimating either the complete condi-
tional distribution p(c)Xi

, or partial conditional distribution p(k)Xi
,

we utilize a CTW with side information as in [44]. In order to
evaluate the causality regret of a given estimator of the causal
measure, we need worst case regret bounds on the sequential
predictors utilized in the estimator.

Lemma 1 ([28], [45]). Let p̂ be a depth-d CTW probability
assignment of a stationary finite-alphabet Markov process
X ∼ p of order less than or equal to d. Then the worst case
regret is bounded as:

sup
xn

log
p(xn)

p̂(xn)
≤ (|X | − 1)L

2
log

n

L

+ L

(
|X |
|X | − 1

+ log |X |
)
− 1

|X | − 1

(64)

where L is the number of leaves in the CTW (equivalently,
the number of states of X).

Next we note that this bound may be extended to the case
where X is given access to causal side information Y :

Proposition 3. Let p̂ be a depth-d CTW probability assignment
of X causally conditioned on Y , where (X,Y ) ∼ p is a pair

of jointly stationary finite-alphabet process of order less than
or equal to d. Then the worst case regret is bounded as:

sup
xn,yn

log
p(xn || yn)

p̂(xn || yn)
≤ (|X | − 1)L

2
log

n

L
+L (|X | − 1) +S

(65)
where L is the number of leaves in the CTW, S is the total

number of nodes in the CTW.

A proof of the proposition is provided in Appendix D-C. Using
the above lemma and proposition we can compute the values of
the causality regret bounds by using (64) and (65) for M (r)(n)
and M (c)(n), respectively, in (42). In the following sections
we compare the causal regret bound with the true estimation
accuracy for three scenarios.

1) Independent Processes: Let X and Y be independent
ternary processes (i.e. Xi, Yi ∈ {0, 1, 2} for all i), with each
process being stationary first order Markov. As such, the
processes are completely characterized by the probabilities
p(xi | xi−1) and p(yi | yi−1) for xi, xi−1, yi, yi−1 ∈ {0, 1, 2}.
Given the independence of X and Y , we have that for all
i = 1, 2, . . . , CY→X(i) = CX→Y (i) = 0.

Figure 2 shows the estimate of the causal measure over
time for n = 10000 samples. We can see that the estimated
causal measure in both directions quickly becomes very small
at all times. The true causal measure is not shown because
it is always zero. In the bottom panel of the figure we see
the normalized causal regret with respect to the true causal
measure as in (47), which in this case is given by the running
average of the estimated causal measure. Additionally, we
show the causal regret bounds, which are computed using
|X | = 3, L = 3 in (64), and L = 9 and S = 10 in (65).

Fig. 2. Top - Estimates of causal measure in each direction for independent
processes. Bottom - Normalized cumulative absolute error of estimates (solid)
and normalized causality regret bounds (dashed).
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2) Unidirectional IID Influence: For the second scenario
we consider a pair of processes wherein each Yi is independent
and identically distributed and Xi is dependent only upon
Xi−1 and Yi−1. As such, it is clear that, in addition to X
and Y being jointly first-order Markov, X is marginally first-
order Markov. While the marginal Markovicity is immediately
clear in this case, we point out that these processes do indeed
satisfy the condition of Theorem 2 for any parameterization
of the probabilities in question.

Figure 3 shows the true causal measure CY→X alongside
the estimates ĈY→X and ĈX→Y . For clarity, only the last 100
time points are shown. We can see that in this time window the
estimated ĈY→X tracks the true causal measure CY→X very
well, and the estimated ĈX→Y has converged to 0 as desired.
In the bottom panel we see that, because the causal measure
ĈX→Y (i) < ĈY→X(i), ci in equation (43) is much smaller
in the X → Y direction and thus the causal regret bound is
considerably tighter. This is consistent with the result obtained
in [42] that plug-in estimators of the DI rate will converge at
a faster rate if the DI rate is zero.

Fig. 3. Top - Estimates of causal measure in each direction for unidirectional
influences. Bottom - Normalized cumulative absolute error of estimate (solid)
and normalized causality regret bounds (dashed).

3) Bidirectional Influences: Lastly, we consider the sce-
nario where X and Y mutually influence each other. Specifi-
cally, let each Xi and Yi be independently influenced by Xi−1
and Yi−1 such that the processes are fully characterized by the
probabilities p(xi | xi−1, yi−1) and p(yi | xi−1, yi−1).

Figure 4 shows the true and estimated causal measures
in both directions. The bottom panel shows the cumulative
absolute error alongside the causal regret bounds. We note
that here we have extended the time horizon to n = 50000
to illustrate that the estimators exhibit bias resulting from
the fact that X is not marginally Markov. As a result, it is
important to note that the true restricted distribution p(r)Xi

will
not be in the reference class of restricted distributions P̃(r)

and we can expect the causality regret bound to be lower than
the cumulative absolute error as n → ∞. Due to the non-
Markovicity of X , computing the true restricted distribution
at each time becomes increasingly challenging. To address
this, we derive a recursive updating algorithm for efficiently
computing the true causal measure CY→X(i) such settings.
Details can be found in Appendix B.

Fig. 4. Top - Estimates of causal measure in each direction for bidirectional
influences. Bottom - Normalized cumulative absolute error of estimate (solid)
and normalized causality regret bounds (dashed).

To address the estimation bias seen in Figure 4, we consider
the partial causal measure C(k)

Y→X(i) defined by (56). Figure
5 shows an estimate of the partial causal measure on the same
sequence considered in Figure 4 with a staleness of k = 1.
The bottom panel of Figure 5 depicts the cumulative absolute
error and the causal regret bounds. While the worst case regret
for the complete predictor M (c)(n) remains the same as in
the previous examples, the regret of the partial predictor is
computed using equation (65) with L = 27 (3 values for xi−1
times 9 possible values for (xi−2, yi−2)) and N = 31 (27 leaf
nodes, 3 depth-1 nodes, and 1 root node).

We can see in Figure 5 that due to the increased number
of nodes in the CTW estimate of the partial distribution, the
normalized absolute error decreases more slowly at the begin-
ning. Regardless, the estimate of the partial causal measure
does not exhibit the same behavior of converging on a biased
estimate. We see the error continues to decrease throughout the
entire sequence. Moreover, a visual comparison of the true and
estimated measures makes clear that the estimate is unbiased.

Given that the same sequences were used in generating
Figures 4 and 5, we can compare the values of the complete
causal measure with the partial causal measure. It is clear
that while there is considerable agreement on the positions
of the spikes in causal influence, the strengths vary. While it
is true that the partial causal measure will be smaller than
the complete causal measure in expectation (i.e. partial DI is
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less than DI), there are times where the stale history yi−k

is misleading about the recent history yi−1i−k+1, and thus we
sometimes see that the partial causal measure is larger than
the complete causal measure on a given sample path. Lastly,
we note that because the true partial distribution is in the class
of reference partial distributions, the causality regret bounds
will bound the cumulative absolute error.

Fig. 5. Top - Estimates of the partial causal measure with k = 1 in
each direction for bidirectional influences. Bottom - Normalized cumulative
absolute error of estimates (solid) and normalized causality regret bounds
(dashed).

B. Stock Market Indices

Fig. 6. The Dow Jones (DJ) Industrial Average and Hang Seng (HS) indices.

We now demonstrate the use of the sample path causal mea-
sure on historical stock market data from the Dow Jones (DJ)
Industrial Average index on the New York Stock Exchange
(NYSE) and the Hang Seng (HS) index on the Shanghai Stock
Exchange (SSE), as in [28]. In [28] it was shown that the DJ
index had a greater influence on the HS index than vice versa
by measuring the DI between the sequences of daily changes
in adjusted closing price. Here we consider the same dataset,
shown in Figure 6.

The data was downloaded from Yahoo Finance. Given that
the NYSE and SSE are closed on different holidays, missing
values were interpolated on days where one was open and the
other was not (weekends and shared holidays were not inter-
polated). We next consider the inter-day percentage change in
adjusted closing price and quantize it to a ternary sequence
with a value of 0 indicating a drop by more than 0.8%, 2
indicating a rise by more than 0.8%, and 1 representing no
significant change. In computing the influence of HS on DJ,
the HS data is shifted forward by one day. This is due to the
fact that on each day, the NYSE closes before the SSE opens,
as noted in [28]. Thus, the HS is affected by the same day DJ,
while the DJ is affected by the previous day HS.

Figure 7 shows the estimate of the causal measure for
different previous day states in each direction using depth-
1 CTW predictors in addition to the estimated DI (dashed
line). Values from the final 3 years of the data are shown
in the box plot, with the fairly tight error bars showing that
the CTW estimators have mostly converged (we would not
expect complete convergence due to the non-stationarity of
stock market data).

There are numerous noteworthy points in Figure 7. First we
note that, as a result of averaging, the DI is never equal to the
causal measure in the DJ to HS direction. In particular we
note that when DJ does not change, it has virtually no effect
on the distribution of HS. Furthermore, most of the time DJ
does not change. On the other hand, on the rare occasion that
DJ went down and HS went up on the previous day (5.1%
of days), the causal measure is almost 4X the DI. Similarly,
on the 4.2% of days where DJ goes up and HS goes down,
the causal measure from HS to DJ is roughly 10X the DI.
When considering this type of data, the added value of Q3
over Q1 becomes very clear. If one has access to what has
already happened (i.e. the previous day state), then why take
an expectation over the past?

Remark 2. It is crucially important to make clear the notion
of causality that is considered in this context. There is no
doubt that there are confounding factors (i.e. factors that affect
both DJ and HS) that would decrease the measured influence
if included in the model. That having been said, it is clear
that there is information contained in the DJ that provides
us with an improved ability to predict the next day’s HS, a
finding which may certainly be of use for applications outside
of classical “causal inference”. In order to make claims of
causal influence, careful attention needs to be paid to potential
causes that are not considered in the model, thus requiring
domain expertise. As such, in scenarios where one cannot
confidently rule out the potential presence of confounding
factors, the proposed measure may be more accurately viewed
as a measure of increased predictability (as in [46]).

VI. DISCUSSION

The concepts presented in this paper can be distilled to three
primary contributions. First, we have introduced a need for
measuring causal influences between random processes that
depend on the sample paths of those processes. We have shown
that in both simple thought experiments and real stock market
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Fig. 7. Causal measure between stock indices for different previous day states from 2008 to 2011. Below each of the 9 possible previous day states we
include the percentage of days in which that state occurs. The dashed lines represent the DI estimate.

data, there exist sample path dependent causal influences that
may occur infrequently, and are thus not captured by average
measures such as GC and DI. Second, we have proposed
a measure for identifying these influences. We have shown
that this measure gives results consistent with intuitions in a
number of examples. Furthermore, we proved finite sample
bounds on the performance of an estimator of our proposed
measure. Third, we have presented a characterization of when
it is possible to reliably estimate both the proposed measure
and the DI. This characterization utilizes the connections
between DI, GC, and causal graphical models to demonstrate
that in many common cases, we should not expect to be able
to get unbiased estimates of DI, which to our knowledge has
been repeatedly overlooked throughout the information theory
literature. To address this issue we introduce a notion of partial
DI and a corresponding sample path dependent partial causal
measure.

There are numerous directions for continued research in
this area. Further leveraging the tools from causal graphical
models can enable a better understanding of the circumstances
in which we can estimate measures of causal influence re-
liably. Furthermore, the tools from this field are necessary
to distinguish between true causal influences and measures
of improved predictability. Additionally, extending the three
questions proposed in the introduction to the case of general
causal graphs is of great interest. In particular, how can
we measure how different realizations of groups of random
variables variables affect another group of random variables
in a given directed graph? We believe the philosophy presented
in this paper may be used to address this question.

It is important to note the present work is built upon the
restrictive assumption that all processes are observed. There
has been considerable recent interest in estimating causal in-

fluences and graph structures when only a subset of processes
may be observed [47]–[49]. As such, there is an opportunity to
study how these results may be applied to inferring dynamic
causal influences that are dependent upon realizations of a
subset of processes.

Another line of future work is further investigation of
the significance of partial directed information developed in
Section IV-A and its application in quantifying information
leakage for coupled systems with delayed information [50],
providing fundamental performance limitations of closed-loop
systems [51] subject to delay constraints, or in characterizing
rate-performance tradeoffs [52] for network control problems
with non-classical information structures [53], [54] pertaining
to information and delay constraints.

A final area for future work is the demonstration of how the
causal measure can provide added value in decision making.
A promising avenue lies in the use of the causal measure for
aiding in time-varying model selection. Take, for example, the
stock market example in Section V-B. It is shown in [55]
that using DI for model selection can yield improvements in
the systemic risk. A natural extension of this would be to
use the sample path causal measure to create a collection
of models that are dependent upon the current “state” of
the stock market. This would enable minimizing the number
of estimated parameters while ensuring that opportunities for
leveraging directed influences are not overlooked.

APPENDIX A
EQUIVALENCE OF INTERVENTIONAL AND

NON-INTERVENTIONAL CAUSAL MEASURE IN SECTION
III-A

First, we introduce the causal model defined by Pearl [7,
Definition 2.2.2], which consists of a causal structure (i.e. a
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DAG) and a set of functions defining a probability distribution
over each node in the DAG. For the three examples in section
III-A, we have that the causal structure is given by Figure 1.
For the first two examples, the functions are given by equations
(27) and (28), respectively. For the third example of horse
betting, we assume that for each i, Xi = fi(X

i−1, Yi−1, Ui)
and Yi = Vi, where fi is some collection of functions,
U is a collection of iid random variables (independent of
X and Y ), and V is a collection of iid random variables
(independent of X , Y , and U ). The key element of this
assumption is that the winner of the ith race, Xi, is functionally
dependent on the side information Yi−1, meaning that chang-
ing the side information could change the winner. Without
this technicality, the example would not constitute a causal
model in the sense of [7, Definition 2.2.2]. Once these causal
models are established, showing the equivalence between the
interventional and non-interventional measures discussed in
Remark 1 can easily be shown using the second rule of the
so-called do-calculus [56, Theorem 3]. Specifically, showing
that p(xi | xi−1, do(yi−1)) = p(xi | xi−1, yi−1) amounts to
showing that Xi and Yi−1 are d-separated by Xi−1 in an
augmented DAG where the outgoing arrows from Yi−1 have
been removed. This holds trivially in all three DAGs in Figure
1 because removing the outgoing arrows from Yi−1 results in
there being no path connecting Yi−1 to Xi in the augmented
DAG.

APPENDIX B
COMPUTING TRUE CAUSAL MEASURE WITH HIDDEN

MARKOV MODELS

In order to compute the true causal measure, it is necessary
to compute the true restricted distribution. As discussed in
Section IV-A, the restricted distribution is, in general, non-
Markov. As such, it is desirable to have an efficient method
for computing the true restricted distribution p(yi | yi−1). Here
we derive update equations for recursively computing p(yi |
yi−1). The proposed updating scheme is a generalization of
the well known recursive method for evaluating the likelihood
of a process under a standard hidden Markov model where the
likelihood is given by p(yi | xi) and the one-step prediction
distribution is given by p(xi | xi−1) [57, Ch. 9].

First, assume X and Y are jointly first order Markov as in
Section V-A and decompose the restricted distribution as the
product of “likelihood” and “prior” terms:

p(yi+1 | yi) =
∑
xi

p(yi+1, xi | yi)

=
∑
xi

p(yi+1 | xi, yi)︸ ︷︷ ︸
Likelihood

p(xi | yi)︸ ︷︷ ︸
Prior

where we note that only the prior term has a long-term depen-
dence on the past. The prior may be further decomposed into
the sum of products of “one-step prediction” and “posterior”
terms:

p(xi | yi) =
∑
xi−1

p(xi, xi−1 | yi)

=
∑
xi−1

p(xi | xi−1, yi−1)︸ ︷︷ ︸
One-Step Prediction

p(xi−1 | yi)︸ ︷︷ ︸
Posterior

where now only the posterior has a long-term dependence on
the past. Lastly, we can use Bayes’ Rule to show that the
posterior depends only on the previous likelihood evaluated at
the newly observed yi and the previous prior:

p(xi−1 | yi) =
p(yi | xi−1, yi−1)p(xi−1 | yi−1)∑
x̃i−1

(yi | x̃i−1, yi−1)p(x̃i−1 | yt−1)

=
p(yi | xi−1, yi−1)p(xi−1 | yi−1)∑
x̃i−1

(yi | x̃i−1, yi−1)p(x̃i−1 | yi−1)

Thus, the restricted distribution can be computed in a recursive
manner. To initialize the algorithm, define y0 = x0 = ∅, p(∅ |
·) = 1, and starting distributions p(· | ∅) = p(·).

APPENDIX C
USEFUL LEMMAS

We first show that the cumulative KL divergence from the
best reference distribution to the predicted distribution is less
than the predictor’s worst-case regret.

Lemma 2. For a sequential predictor p̂i with worst case
regret M(n), a collection observations (xn, yn, zn), and any
distribution from the reference class p ∈ P̃n:

n∑
i=1

D(pi || p̂i) ≤M(n) (66)

Proof.
n∑
i=1

D(pi || p̂i) =

n∑
i=1

∑
x∈X

pi(x) log
pi(x)

p̂i(x)

≤
n∑
i=1

[
sup
x∈X

log
pi(x)

p̂i(x)

]∑
x∈X

pi(x)

=
n∑
i=1

sup
x∈X

r(p̂i, pi, x)

≤ sup
xn∈Xn

n∑
i=1

r(p̂i, pi, xi)

≤ sup
xn∈Xn

sup
p∈P̃n

n∑
i=1

r(p̂i, pi, xi)

≤M(n)

Next, we bound the cumulative difference in expectation of
a bounded function between the best reference distribution and
sequential predictor.

Lemma 3. For a sequential predictor p̂i with worst case regret
M(n) ≥ 1, a collection observations (xn, yn, zn), cumulative
loss minimizing distribution p∗i , and a collection of functions
gi : X → R for i = 1, . . . , n:

n∑
i=1

∣∣Ep∗i [gi(X)]− Ep̂i [gi(X)]
∣∣ ≤ ||~cn||2√

2

√
M(n) (67)
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where ~cn = [c1, . . . , cn] is a vector with elements:

ci =
∑
x∈X
|gi(x)| (68)

Proof.
n∑
i=1

∣∣Ep∗i [gi(X)]− Ep̂i [gi(X)]
∣∣

=
n∑
i=1

∣∣∣∣∣∑
x∈X

[p∗i (x)− p̂i(x)] gi(x)

∣∣∣∣∣
≤

n∑
i=1

∑
x∈X
|p∗i (x)− p̂i(x)| |gi(x)| (69)

≤
n∑
i=1

[∑
x∈X
|p∗i (x)− p̂i(x)|

][∑
x∈X
|gi(x)|

]
(70)

≤
n∑
i=1

√
1

2
D(p∗i || p̂i)

∑
x∈X
|gi(x)| (71)

=
1√
2

n∑
i=1

ci

√
D(p∗i || p̂i)

where (69) uses the triangle inequality, (70) follows from
both terms of the sum being positive, and (71) uses Pinsker’s
inequality. Focusing on the sum, we define a vector ~vn =
[v1, . . . , vn] such that vi =

√
D(p∗i || p̂i) for i = 1, . . . , n:

n∑
i=1

ci

√
D(p∗i || p̂i) = |~cn · ~vn| (72)

≤ ||~c||2 ||~v||2 (73)

= ||~c||2

(
n∑
i=1

D(p∗i || p̂i)

) 1
2

≤ ||~c||2
√
M(n) (74)

where (72) follows from the fact that ci ≥ 0 and vi ≥ 0 for
all i, (73) uses the Cauchy–Schwarz inequality and (74) uses
Lemma 2 and the assumption that M(n) ≥ 1.

APPENDIX D
PROOF OF PROPOSITIONS

A. Proof of Proposition 1

Using the definition of the causal measure, we get that the
left hand side of (24) is:∑
H(c)

i

p(H(c)
i )D(p

(c)
Xi
|| p(r)Xi

)

=
∑
H(c)

i

p(H(c)
i )

∑
xi

p
(c)
Xi

(xi) log
p
(c)
Xi

(xi)

p
(r)
Xi

(xi)

=
∑
H(c)

i

p(H(c)
i )

∑
xi

p(xi | H(c)
i ) log

p(xi | H(c)
i )

p(xi | H(r)
i )

=
∑
H(c)

i ,xi

p(H(c)
i , xi) log

p(xi | H(c)
i )

p(xi | H(r)
i )

= EXi,Y i−1,Zi−1

[
log

p(Xi | Xi−1, Y i−1, Zi−1)

p(Xi | Xi−1, Zi−1)

]
= I(Y n−1 → Xn || Zn−1)

B. Proof of Proposition 2

First we note that the lower bound holds simply by applying
conditioning reduces entropy to the first term of the PDI rate
as defined in (60). Formally, we have:

Ī
(k)
P (Y → X)

= H̄(k−1)(X || Y )− H̄(1)(X || Y )

= lim
n→∞

1

n

[
H(Xn || Y n−k−1)−H(Xn || Y n−1)

]
≤ lim
n→∞

1

n

[
H(Xn)−H(Xn || Y n−1)

]
= H̄(X)− H̄(1)(X || Y ) = Ī(Y → X)

Next, for the TDI upper bound, we note that for k2 = d, the
bound was proven in [42]. For completeness we extend the
proof for k2 ≥ d:

Ī
(k)
T (Y → X)

= lim
n→∞

1

n

n∑
i=1

I(Xi;Y
i−1
i−k2 | X

i−1
i−k2)

= lim
n→∞

1

n

n∑
i=1

H(Xi | Xi−1
i−k2)−H(Xi | Xi−1

i−k2 , Y
i−1
i−k2)

= lim
n→∞

1

n

n∑
i=1

H(Xi | Xi−1
i−k2)−H(Xi | Xi−1

i−d , Y
i−1
i−d )

≥ lim
n→∞

1

n

n∑
i=1

H(Xi | Xi−1)−H(Xi | Xi−1
i−d , Y

i−1
i−d )

= H̄(X)− H̄(1)(X || Y ) = Ī(Y → X)

as was to be shown.

C. Proof of Proposition 3

As in the statement of the proposition, let L be the number
of leaves in the CTW and N be the total number of nodes in
the tree. Define pe(xn) to be the Dirichlet estimator introduced
in [58], otherwise known as the KT-estimator. Then it is known
that the worst case regret is given by [45]:

sup
xn

log
p(xn)

pe(xn)
≤ |X | − 1

2
log n+ |X | − 1 (75)

We next define the KT-tree estimator with side information
pc(x

n || yn) as the estimator where, for each possible
“context” (xi−1i−d, y

i−1
i−d), a separate instance of a KT-estimator

is maintained. Letting L , {(xi−1i−d, y
i−1
i−d) : (xi−1i−d, y

i−1
i−d) ∈

X d × Yd} be the set of contexts (i.e. leaf nodes), we have
that |L| = L. Defining p

(l)
e (xn || yn) , p

(l)
e (x(l)) to be

the KT-estimator that assigns probabilities to x(l) , {xi :

(xi−1i−d, y
i−1
i−d) = l} for l ∈ L with |x(l)i | , nl, we can
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derive the worst case regret of the KT-tree estimator with side
information as follows:

sup
xn,yn

log
p(xn)

pc(xn)
= sup
xn,yn

log
p(xn || yn)∏

l∈L p
(l)
e (xn || yn)

= sup
xn,yn

log
∏
l∈L

p(x(l))

p
(l)
e (x(l))

= sup
xn,yn

∑
l∈L

log
p(x(l))

p
(l)
e (x(l))

≤
∑
l∈L

(
|X − 1|

2
log nl + |X | − 1

)
(76)

=
L(|X | − 1)

2

∑
l∈L

1

L
log nl + L(|X | − 1)

≤ L(|X | − 1)

2
log
∑
l∈L

nl
L

+ L(|X | − 1)

(77)

=
L(|X | − 1)

2
log

n

L
+ L(|X | − 1) (78)

where (76) follows from the bound in (75), (77) follows
from Jensen’s inequality, and (78) follows from the fact that∑
l nl = n. We now define the set of all nodes to be

S , {(xi−1i−k, y
i−1
i−k) : (xi−1i−k, y

i−1
i−k) ∈ X k × Yk, k = 1, . . . , d},

with |S| = S. Then, we can define a context tree by letting
defining a probability p

(s)
w (xn || yn) for each node s ∈ S as

follows:

p(s)w (xn || yn)

=

{
1
2p

(s)
e (xn || yn) + 1

2

∏
s′∈X×Y p

(s′s)
w (xn || yn) s /∈ L

p
(s)
e (xn || yn) s ∈ L

(79)
where s′s = (xi−1i−k−1, y

i−1
i−k−1) ∈ X k+1 × Yk+1 represents a

child node of s = (xi−1i−k, y
i−1
i−k) with s′ = (xi−k−1, yi−k−1).

Letting λ be the root node of the tree (i.e. sλ = s), the CTW
probability assignment is given by pw(xn || yn) , f

(λ)
w (xn ||

yn). This probability assignment may be recursively lower-
bounded as:

pw(xn || yn) =
1

2
p(λ)e (xn || yn) +

1

2

∏
s∈X×Y

p(s)w (xn || yn)

≥ 1

2

∏
s∈X×Y

p(s)w (xn || yn)

≥ 1

2

∏
s∈X×Y

1

2

∏
s′∈X×Y

p(s
′s)

w (xn || yn)

≥ . . .

≥ 1

2S

∏
l∈L

p(l)w (xn || yn)

=
1

2S

∏
l∈L

p(l)e (xn || yn)

=
1

2S
p(l)c (xn || yn).

Finally, we can consider the log-likelihood ratio of true prob-
ability and the CTW probability in order to obtain a bound on
the worst case regret of the CTW:

sup
xn,yn

log
p(xn || yn)

pw(xn || yn)
≤ S + log

p(xn || yn)

pc(xn || yn)

≤ S +
L(|X | − 1)

2
log

n

L
+ L(|X | − 1)

as was to be shown.

APPENDIX E
PROOF OF THEOREMS

A. Proof of Theorem 1

We begin by defining the functions:

ĝi(X) , log
p̂
(c)
Xi

(X)

p̂
(r)
Xi

(X)
g∗i (X) , log

p
(c)∗
Xi

(X)

p
(r)∗
Xi

(X)
.

Using the definition of the causal measure and KL-divergence:
n∑
i=1

∣∣∣ĈY→X(i)− C∗Y→X(i)
∣∣∣

−
∣∣∣∣Ep(c)∗Xi

[ĝi(X)]− E
p̂
(c)
Xi

[ĝi(X)]

∣∣∣∣ (80)

=

n∑
i=1

∣∣∣∣Ep(c)∗Xi

[g∗i (X)]− E
p̂
(c)
Xi

[ĝi(X)]

∣∣∣∣
−
∣∣∣∣Ep(c)∗Xi

[ĝi(X)]− E
p̂
(c)
Xi

[ĝi(X)]

∣∣∣∣
≤

n∑
i=1

∣∣∣∣ ∣∣∣∣Ep(c)∗Xi

[g∗i (X)]− E
p̂
(c)
Xi

[ĝi(X)]

∣∣∣∣
−
∣∣∣∣Ep(c)∗Xi

[ĝi(X)]− E
p̂
(c)
Xi

[ĝi(X)]

∣∣∣∣ ∣∣∣∣ (81)

≤
n∑
i=1

∣∣∣∣Ep(c)∗Xi

[g∗i (X)]− E
p̂
(c)
Xi

[ĝi(X)]

− E
p
(c)∗
Xi

[ĝi(X)] + E
p̂
(c)
Xi

[ĝi(X)]

∣∣∣∣ (82)

=
n∑
i=1

∣∣∣∣Ep(c)∗Xi

[g∗i (X)− ĝi(X)]

∣∣∣∣
=

n∑
i=1

∣∣∣∣∣Ep(c)∗Xi

[
log

p
(c)∗
Xi

(X)

p̂
(c)
Xi

(X)
− log

p
(r)∗
Xi

(X)

p̂
(r)
Xi

(X)

]∣∣∣∣∣
≤

n∑
i=1

∣∣∣D(p
(c)∗
Xi
|| p̂(c)Xi

)
∣∣∣+

∣∣∣∣∣Ep(c)∗Xi

[
log

p
(r)∗
Xi

(X)

p̂
(r)
Xi

(X)

]∣∣∣∣∣ (83)

≤M (c)(n) +M (r)(n) (84)

where (81) follows from the properties of absolute value, (82)
follows from the reverse triangle inequality, (83) follows from
the triangle inequality, and (84) follows from non-negativity of
the KL-divergence, Lemma 2, and Assumption 2. Moving the
second term of (80) to the other side of the inequality yields:
n∑
i=1

∣∣∣ĈY→X(i)− C∗Y→X(i)
∣∣∣
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≤M (c)(n) +M (r)(n) +
n∑
i=1

∣∣∣∣Ep(c)∗Xi

[ĝi(X)]− E
p̂
(c)
Xi

[ĝi(X)]

∣∣∣∣
≤M (c)(n) +M (r)(n) +

||~cn||2√
2

√
M (c)(n) (85)

where (85) follows from Lemma 3. This concludes the proof.

B. Proof of Theorem 2

The first statement of the theorem follows trivially from the
removal of Y i−1i−d from p(Xi | Xi−1

i−d , Y
i−1
i−d , Z

i−1
i−d). Moving on,

we will show that if I(Yj ;Yk | Xi, Zi) = 0 for all j < k ≤ i,
X is conditionally Markov of order at most 2d given Z. Note
that:

p(Xi | Xi−1, Zi−1)

=
∑
yi−1
i−d

p(Xi | Xi−1, yi−1i−d, Z
i−1)

i−1∏
j=i−d

p(yj | Xi−1, Zi−1)

(86)

=
∑
yi−1
i−d

p(Xi | Xi−1
i−d , y

i−1
i−d, Z

i−1
i−d)

i−1∏
j=i−d

p(yj | Xi−1
j−d, Z

i−1
j−d)

(87)

=
∑
yi−1
i−d

p(Xi | Xi−1
i−2d, y

i−1
i−d, Z

i−1
i−2d)

i−1∏
j=i−d

p(yj | Xi−1
i−2d, Z

i−1
i−2d)

(88)

= p(Xi | Xi−1
i−2d, Z

i−1
i−2d)

where (86) follows from the chain rule and that yi−1i−d are
conditionally independent given (Xi−1, Zi−1), (87) follows
from the joint Markovicity of X and Y and the conditional
independence of yi−1i−d, and (88) follows from the conditional
independence of the past and the future given the present for
Markov processes.

Next we will show that if there is some j < k ≤ i such that
I(Yj ;Yk | Xi, Zi) > 0, then there is no positive integer l such
that (Xi−1

i−l , Z
i−1
i−l ) d-separates (Xi−l−1, Zi−l−1) from Xi. To

do this, we first note that (Xi, Zi) does not d-separate Yj and
Yk, because if it did, they would be conditionally independent.
As such, when performing the d-separation algorithm given by
Algorithm 1, Yj and Yk will be connected by an undirected
edge after completing step 4. Furthermore, if we let τ1 = k−j,
then by the joint stationarity of (X,Y, Z), every Yi will be
connected to Yi−τ1 at the end of step 4. Furthermore, we know
that I(Y n → Xn | Zn) > 0 implies that for some q ≤ m,
there is a directed edge from Yq to Xm. Letting τ2 = m− q,
we know from the joint stationarity of (X,Y, Z) that for every
Xi, there is an incoming directed edge from Yi−τ2 . As such,
at the end of step 4, every Xi will be part of an undirected
path connecting Yi−τ2 , Yi−τ2−τ1 , Yi−τ2−2τ1 , . . . . Thus, for
any l ≥ 1 this path can be followed r steps such that rτ1 > d.
Then we know that Yi−τ2−rτ1 is connected via an undirected
edge to Xi−τ2−rτ1+τ2 = Xi−rτ1 . Recalling that in step 3 of
the d-separation algorithm, (Xi−1

i−l , Z
i−1
i−l ) have been removed

from the graph, we note that since i − rτ1 < i − l, Xi−rτ1

is in the graph. Thus, there is an undirected path connecting
Xrτ1 ∈ Xi−l−1 and Xi, which implies that (Xi−1

i−l , Z
i−1
i−l )

does not d-separate (Xi−l−1, Zi−l−1) and Xi for any l.

C. Proof of Theorem 3

We will show that the statement holds for a fixed l, noting
that a countably infinite union of measure zero sets has mea-
sure zero. First note that, if X is conditionally l-Markov given
Z, then for any xi−1i−l−1, x

′
i−l−1 ∈ X and zi−1i−l−1, z

′
i−l−1 ∈ Z

the following equality must hold:

p(xi | xi−1i−l−1, z
i−1
i−l−1) = p(xi | x̃i−1i−l−1, z̃

i−1
i−l−1) (89)

where we define x̃i−1i−l−d , {xi−1i−l , x
′
i−l−1} and z̃i−1i−l−1 ,

{zi−1i−l , z
′
i−l−1}. Define θSi

X,Y,Z , p(Si | Xi−1
i−d , Y

i−1
i−d , Z

i−1
i−d)

for S ∈ {X,Y, Z} and θ , {θab : a ∈ X ∪ Y ∪ Z, b ∈
X d×Yd×Zd}. We will demonstrate that the equation given
by (89) amounts to solving a polynomial function of the
parameters θ. It is shown in [59] that the set of solutions to
a non-trivial polynomial (i.e. one that is not solved by all of
RN ) will have Lebesgue measure zero with respect to RN .
Focusing on the left side of (89), we see that:

p(xi | xi−1i−l−1, z
i−1
i−l−1) (90)

=
∑
yi−1
i−l−1

θxi
x,y,zp(y

i−1
i−l−1 | x

i−1
i−l−1, z

i−1
i−l−1)

=
∑
yi−1
i−l−1

θxi
x,y,z

p(xi−1i−l−1, y
i−1
i−l−1, z

i−1
i−l−1)

p(xi−1i−l−1, z
i−1
i−l−1)

=

∑
yi−1
i−l−1

θxi
x,y,zπ(xi−l−1, yi−l−1, zi−l−1)

∏l
j=1 θ

(x,y,z)i−j
x,y,z∑

ỹi−1
i−l−1

π(xi−l−1, ỹi−l−1, zi−l−1)
∏l
j=1 θ

(x,ỹ,z)i−j

x,ỹ,z

(91)

where π : |X |× |Y|× |Z| → [0, 1] is the invariant distribution
and θ

(x,y,z)i
x,y,z , θxi

x,y,zθ
yi
x,y,zθ

zi
x,y,z . Next, define a matrix A ∈

R|X ||Y||Z|×|X||Y||Z| containing the transition probabilities, i.e.
Aj,k = θRk

Rj
where R is some enumeration over the |X ||Y||Z|

possible values taken by (X,Y, Z). Then we can represent
π in vector form π ∈ [0, 1]|X ||Y||Z| as the unique solution to
π = πA. Let π̃ be an arbitrary vector satisfying (AT−I)π̃ = 0,
and note that for any π̃ there is a constant C such that Cπ̃ = π.
Such a vector π̃ can be found by performing Gauss-Jordan
elimination on (AT − I), and as a result, each element π̃j can
be written as fractions of polynomial functions of θ. Replacing
π with Cπ̃ in its functional form π̃ : |X | × |Y| × |Z| → R in
(91) we see that C cancels in the numerator and denominator
and thus each side of (89) can be written entirely as fractions of
polynomial functions of θ. Next, repeat the process on the right
hand side of (89) with x̃i−1i−l−d and z̃i−1i−l−d. Then, for any term
that appears as a fraction, we can multiply both sides of (89) by
the denominator and repeat until (89) is a polynomial function
of θ. Finally, we note that the polynomial given by (89) is
trivial only if every process is a solution which can be shown
not to be the case by a straightforward counterexample.
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D. Proof of Theorem 4

We will first show that X̃ is (d + k)-Markov, i.e. X̃i ⊥
X̃i−k−d−1 | X̃i−1

i−k−d. Note that the distribution of X̃i given
X̃i−1 may be written as:

p(Xi, Yi−k+1 | Xi−1, Y i−k) (92)

=
∑

yi−1
i−k+2

p(Xi, Yi−k+1, y
i−1
i−k+2 | X

i−1, Y i−k)

,
∑

yi−1
i−k+2

p(Xi, Ỹ
i−1
i−k+1 | X

i−1, Y i−k)

=
∑

yi−1
i−k+2

p(Xi | Xi−1, Ỹ i−1)p(Ỹ i−1i−k+1 | X
i−1, Y i−k)

=
∑

yi−1
i−k+2

p(Xi | Xi−1
i−k−d, Ỹ

i−1
i−k−d)p(Ỹ

i−1
i−k+1 | X

i−1
i−k−d, Y

i−k
i−k−d)

(93)

=
∑

yi−1
i−k+2

p(Xi, Ỹ
i−1
i−k+1 | X

i−1
i−k−d, Y

i−k
i−k−d)

= p(Xi, Yi−k+1 | Xi−1
i−k−d, Y

i−k
i−k−d)

where, for ease of notation, we have defined Ỹj = yj if i −
k + 2 ≤ j ≤ i − 1 and Ỹj = Yj otherwise, and (93) follows
from the joint Markovicity of X and Y and:

p(Ỹ i−1i−k+1 | X
i−1, Y i−k) =

i−1∏
j=i−k+1

p(Ỹj | Xi−1, Ỹ j−1)

=
i−1∏

j=i−k+1

p(Ỹj | Xi−1
i−k−d, Ỹ

j−1
i−k−d)

= p(Ỹ i−1i−k+1 | X
i−1
i−k−d, Y

i−k
i−k−d)

where we define Ỹ ba = ∅ when b < a. This proves the
Markovicity of X̃ . To get the equality given by (53), we simply
take the sum over Yi−k+1 in the above equations.

Next, we will show that X̃ is irreducible. We note that the
possible states of X̃ may be a subset of the possible states
of (X,Y ), i.e. X̃ ⊂ X × Y . Each state x̃ ∈ X̃ occurs
as a result of visiting a state (xi−k+1, yi−k+1) followed by
(xi, yi) after k − 1 steps. Given that (X,Y ) is irreducible,
every state (xi−k+1, yi−k+1) ∈ X × Y can be visited from
any state (xi, yi) ∈ X × Y . As a result, every state in x̃ ∈ X̃
can be visited from any other state x̃′ ∈ X̃ . Therefore, X̃ is
irreducible.

Lastly, we will show that if (X,Y ) is aperiodic then X̃
is also aperiodic. Note that for any state x̃i = (Xi =
a, Yi−k+1 = b) ∈ X̃ , we know there exists c ∈ X and d ∈ Y
such that p(Xi−k+1 = c, Yi−k+1 = b,Xi = a, Yi = d) > 0.
By the aperiodicity we know that the greatest common divisor
of the set of τ such that:

p(Xi−k+1 = c, Yi−k+1 = b,Xi−k+1+τ = c, Yi−k+1+τ = b) > 0

is one. As a result, the same is true of τ such that:

0 <p(Xi−k+1 = c, Yi−k+1 = b,Xi = a, Yi = d,

Xi−k+1+τ = c, Yi−k+1+τ = b,Xi+τ = a, Yi+τ = d)

≤p(Yi−k+1 = b, Yi−k+1+τ = b,Xi = a,Xi+τ = a)

=p(x̃i, x̃i+τ )

implying that X̃ is aperiodic.

E. Proof of Theorem 5

Let the estimate of the partial DI rate be given by:

Î
(k)
P,n(Y → X) ,

1

n

n∑
i=1

D(p̂
(c)
Xi
|| p̂(k)Xi

). (94)

Then the theorem states that Î(k)P,n converges to Ī
(k)
P almost

surely. Following the proof of Theorem 3 in [28], decompose
the estimate as:

Î(k)n (Y → X) =
1

n

n∑
i=1

∑
xi

p̂
(c)
Xi

(xi) log
1

p̂
(k)
Xi

(xi)

− 1

n

n∑
i=1

∑
xi

p̂
(c)
Xi

(xi) log
1

p̂
(c)
Xi

(xi)
.

It was shown in [28] that the second term on the right hand
side of the above equation converges to H̄(1)(X || Y ) almost
surely. Next, define the quantity:

F (k)
n ,

1

n

n∑
i=1

∑
xi

p̂
(c)
Xi

(xi) log
1

p̂
(k)
Xi

(xi)
. (95)

Then it remains to be shown that F (k)
n converges to H̄(k)(X ||

Y ) almost surely. Next, define R(k)
n and S(k)

n as:

R(k)
n ,

1

n

n∑
i=1

[∑
xi

p
(c)
Xi

(xi) log p
(k)
Xi

(xi)− p̂(c)Xi
(xi) log p̂

(k)
Xi

(xi)

]

S(k)
n ,− 1

n

n∑
i=1

∑
xi

p
(c)
Xi

(xi) log p
(k)
Xi

(xi)− H̄(k)(X || Y )

and note that F (k)
n −H̄(k)(X || Y ) = R

(k)
n +S

(k)
n . As such, all

that remains to be shown is that R(k)
n and S(k)

n converge to zero
almost surely. It is shown in Lemma 2 of [28] that the CTW
probability assignment p̂(c)Xi

(xi) converges to p
(c)
Xi

(xi) almost
surely if (X,Y ) is a stationary irreducible aperiodic finite-
alphabet Markov process. We showed in Theorem 4 that this
condition implies that the process X̃ with X̃i , (Xi, Yi−k+1)
is also a stationary aperiodic finite-alphabet Markov process
and thus p̂(k)Xi

(xi) converges to p(k)Xi
(xi) almost surely as well.

As a result, we see that the bracketed term in R(k)
n converges

to zero almost surely as i tends to infinity. Furthermore, since
R

(k)
n is the Cesáro mean of the bracketed term, it too converges

to zero almost surely.
To show that S(k)

n converges to zero, first define the first
term as:

G
(k)
i , −

∑
xi

p
(c)
Xi

(xi) log p
(k)
Xi

(xi)

= −
∑
xi

p(xi | xi−1, yi−1) log p(xi | xi−1, yi−k)

= −
∑
xi

p(xi | xi−1i−k−d, y
i−1
i−k−d) log p(xi | xi−1i−k−d, y

i−k
i−k−d)

, g(xi−1i−k−d, y
i−1
i−k−d)
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Then, from Breiman’s generalized ergodic theorem [60], it
follows that the following equality holds almost surely:

lim
n→∞

1

n

n∑
i=1

g(xi−1i−k−d, y
i−1
i−k−d) = E

[
g(X−1−k−d, Y

−1
−k−d)

]
.

Finally, using the law of iterated expectation, we note that:

E[g(X−1−k−d, Y
−1
−k−d)]

=E

[
−
∑
x0

p(x0 | X−1−k−d, Y
−1
−k−d)

log p(x0 | X−1−k−d, Y
−k
−k−d)

]

=E

[
E

[
−
∑
x0

f(x0 | X−1−k−d, Y
−1
−k−d)

log p(x0 | X−1−k−d, Y
−k
−k−d)

∣∣∣∣X−1−k−d, Y −k−k−d
]]

=E

[
−
∑
x0

p(x0 | X−1−k−d, Y
−k
−k−d)

log p(x0 | X−1−k−d, Y
−k
−k−d)

]
=H̄(k)(X || Y )

Thus, we conclude that:

lim
n→∞

S(k)
n = lim

n→∞

1

n

n∑
i=1

G
(k)
i − H̄

(k)(X || Y ) = 0 p− a.s.

as was to be shown.
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