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We propose an approach for learning latent directed polytrees as long as
there exists an appropriately defined discrepancy measure between the
observed nodes. Specifically, we use our approach for learning directed
information polytrees where samples are available from only a subset
of processes. Directed information trees are a new type of probabilis-
tic graphical models that represent the causal dynamics among a set of
random processes in a stochastic system. We prove that the approach
is consistent for learning minimal latent directed trees. We analyze the
sample complexity of the learning task when the empirical estimator of
mutual information is used as the discrepancy measure.

1 Introduction

“Latent graphical models” refers to a class of probabilistic graphical models
that encode the relationship between a set of observed and a set of hidden
variables. Introducing latent variables can greatly improve the flexibility of
probabilistic modeling, allowing it to address a diverse range of problems
with hidden factors.

A class of directed graphical models that provide a succinct representa-
tion of causal dynamics was recently introduced by Quinn, Kiyavash, and
Coleman (2015). In such models, nodes are random processes, and edges
depict causation measured by causally conditioned directed information
(Massey, 1990).

Neural Computation 28, 1723–1768 (2016) c© 2016 Massachusetts Institute of Technology
doi:10.1162/NECO_a_00874



1724 J. Etesami, N. Kiyavash, and T. Coleman

The main contribution of this article is to develop an approach for struc-
ture learning of a directed graphical model with polytree structure when
only a subset of random processes is observed. Specifically, we will consider
the scenario of latent directed information polytrees, where the directed in-
formation graph representing observed and unobserved processes is a tree
with multiple roots. Learning such graphs requires both finding the num-
ber of hidden processes and recovering the connections among all hidden
and observed nodes. To perform the learning task, we define a discrepancy
measure between nodes of a directed tree and introduce an algorithm that
identifies the structure given the discrepancies between only a subset of
nodes (observed nodes). We further show the applicability of the proposed
algorithm through simulating both synthetic and real-world data sets.

Polytree models have applications in real world. For instance, polytrees
were implemented to enhance caching strategies in distributed databases
(Messaouda, Oommen, & Matwin, 2003). Dependency polytrees were also
applied to develop an inference framework that optimizes hardware com-
ponents according to the performance and price of architectures (Zaveri &
Hammerstrom, 2010). Sucar, Pérez-Brito, Ruiz-Suárez, and Morales (1997)
applied a polytree structure graphical model for ozone prediction in Mexico
City, where the ozone level is used as global indicator for air quality. More-
over, protein signaling pathways might be modeled by causal polytrees.
For instance, an NFkB protein signaling pathway activates mammalian
immune system cells to produce antibodies against inflammation (Lodish
et al., 2000). de Campos (1994) characterizes dependency graphical models
that are isomorphic to polytree graphs.

Even if the underlying structure is not a tree, there are efficient algorithms
that approximate the underlying causal structure by the best directed tree
such as Rebane and Pearl (1987); Quinn, Kiyavash, and Coleman (2013).
Rebane and Pearl (1987) introduce an algorithm similar to the Chow-Liu
algorithm (Chow & Liu, 1968) to construct a polytree-shaped network to
approximate the probability distribution of the network.

Since in a directed polytree, a natural notion of hierarchy (depth) exists,
polytree approximation can be used to infer the influence hierarchy among
the processes. Such an inference could be helpful in, for instance, determin-
ing root causes of events or where to intervene for regulatory action such
that it could effectively trickle down.

In contrast to previous latent tree learning approaches such as Choi, Tan,
Anandkumar, and Willsky (2011), we do not require joint gaussianity or
symmetry properties for the joint distribution of processes.

The remainder of the article is organized as follows. We formally intro-
duce the background on directed information graphs and the concept of a
minimal latent directed information tree in sections 3 and 4. In section 5,
we present an approach that, given an appropriately defined discrepancy
measure on the observed nodes, recovers the entire latent directed polytree
under mild assumptions. In section 6, we introduce an example of such a
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discrepancy measure based on the time delays between pairs of processes
that can be used to learn directed information polytrees. In section 7, we
characterize the sample complexity of the learning algorithm. Our experi-
mental results are presented in section 8. We conclude in section 9.

2 Related Work

Graphical models for representing the dependency and the causal relation-
ship between a set of random variables have been studied extensively. We
refer interested readers to Pearl (1988) and Koller and Friedman (2009),
which provide good foundations for the theory and techniques. As the
focus of this work is causal inference, we review the main approaches to
represent causal interaction in a stochastic network.

Granger causality and the principle of intervention are the main frame-
works to identify causal interactions in a causal network. The principle of
intervention (Pearl, 2000) infers the causal relationships by fixing certain
variables and allowing others to change, to see how these changes influ-
ence the statistics of the other variables. The idea of Granger causality is that
a random process X is causing Y, if incorporating the past of X improves
the prediction of the future of Y. Granger (1969) proposed a framework to
capture this in an autoregressive (linear) setting. As part of the effort to
generalize Granger’s causality to more general settings, a class of graphical
models, the Granger causality graph, was developed (Dahlhaus & Eich-
ler, 2003; Dahlhaus, 2000; Eichler, 2007; Runge, 2014). This class of graphs
consists of a mix of both directed and undirected edges for multivariate au-
toregressive time series, and the nodes in the graph represent processes. Al-
though, Dahlhaus and Eichler (2003) suggested that, conceptually, Granger
causality graphs could be employed for nonlinear relationships, in this case
some canonical properties of the graphical models do not hold.

Directed information (DI) is an information-theoretic quantity that gen-
eralizes Granger causality beyond linear models (Rissanen & Wax, 1987).
It was introduced by (Marko, 1973) and then later formalized by Massey
(1990). DI has been used in many applications to infer causal relationships.
For example, it has been used for analyzing neuroscience data (Quinn, Cole-
man, Kiyavash, & Hatsopoulos, 2011; Kim, Putrino, Ghosh, & Brown, 2011;
Liu & Aviyente, 2010), gene regulatory data (Rao, Hero, States, & Engel,
2007), and video recordings (Chen, Hero, & Savarese, 2012).

Transfer entropy, introduced by Schreiber (2000), is another measure
of causality in the literature (Chávez, Martinerie, & Le Van Quyen, 2003;
Gourévitch & Eggermont, 2007). The relationship of DI and transfer entropy
is discussed in detail in (Quinn, Coleman et al., 2011). Transfer entropy is
defined only for processes that satisfy Markov property, in which case the
DI can be written as a sum of a sequence of transfer entropies.

Directed information graphs (DIGs) define a graphical model that cap-
tures the generalization of Granger causality through the DI metric among



1726 J. Etesami, N. Kiyavash, and T. Coleman

stochastic processes (Quinn, Coleman et al., 2011). DIGs subsume Granger
causal graphs. Quinn et al. (2015) showed that in order to guarantee the
uniqueness of DIGs, the joint dynamics of the system must be strictly causal.
In this letter, we consider learning the structure of DIGs in which a set of
nodes is not observable (latent).

There are other type of graphical models, such as Bayesian networks
(Pearl, 2000) and ancestral graphs (Zhang, 2008), that have been used to
encode conditional independence relationships in directed acyclic graphs
(DAGs). A dynamic Bayesian network (DBN) (Murphy, 2002) is a class of
graphical models that extends Bayesian networks to model probability dis-
tributions over a semi-infinite collection of random variables. For example,
hidden Markov models (HMMs) can be represented as DBNs. Since the size
of DBNs depends on the time homogeneity and the Markov order of the
random processes, in general, the graphs can grow with time. Thus, they
are not well suited for providing succinct visualization of relationships be-
tween the past and the future of processes. As an example, the DBN graph
of a vector autoregressive (VAR) process X(t) ∈ R

m of order L requires mL
nodes (Dahlhaus & Eichler, 2003). Directed information graphs, the alter-
native we study, represent each random process as a node in the graph.
Therefore, their size depends on neither the Markov order of processes nor
the time (for the VAR example, the size is m).

In the past few decades, several approaches have been developed for
learning these graphical models (e.g., Quinn, Coleman et al., 2011; Shimizu,
Hoyer, Hyvärinen, & Kerminen, 2006; Hyvärinen & Smith, 2013). As the
goal of this article is learning graphical models with latent nodes, we review
some of the previous relevant latent learning algorithms. We categorize the
learning approaches to graphs that represent conditional independence
relationships among random variables such as Bayesian networks or an-
cestral graphs and random processes such as DI graphs. Note that some of
the learning methods proposed for the former can be extended to the latter,
but the methods such as the one presented in this work, which requires the
notion of time delay among processes, are applicable to only the second
type of graphical models.

One approach for learning latent graphical models is to fix the number of
latent vertices and the structural relationships between latent and observed
variables and subsequently use the expectation maximization (EM) algo-
rithm to estimate the model parameters. Given that often the optimization
is over a nonconvex function, the performance depends on initialization
and the algorithm may get trapped in suboptimal local minima (Elidan,
Friedman, & Chickering, 2005).

Jalali and Sanghavi (2012) consider learning a VAR model with hidden
components. The model is identifiable under the assumptions that con-
nections between observed variables are sparse and each latent variable
interacts with many observed variables. Geiger, Zhang, Schölkopf, Gong,
and Janzing (2015) and Boyen, Friedman, and Koller (1999) apply a method
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based on the EM algorithm to infer properties of partially observed Markov
processes. Geiger et al. (2015) relax the finite-state condition required by
Boyen et al. (1999) and provide sufficient conditions under which the par-
tially observed Markov process is identifiable. Essentially they show that
when the noise is independent and nongaussian or the observed variables
do not influence the hidden variables, the model is identifiable. Chan-
drasekaran, Parrilo, and Willsky (2010) consider learning latent graphical
models in the setting in which the latent and observed variables are jointly
gaussian, the conditional statistics of the observed variables given the latent
variables is a sparse graph, and the number of latent nodes is small relative
to the number of observed variables. They propose a tractable convex pro-
gram based on regularized maximum likelihood for latent-variable graph-
ical model selection. However, our approach does not specify any model
for the joint distribution between the observed and the latent variables.
Furthermore, it may have a relatively large number of hidden variables.
An alternative method (Elidan, Nachman, & Friedman, 2007) is based on
a greedy, combinatorial heuristic that assigns latent variables to groups of
observed variables via clustering of the observed variables. This approach
has no consistency guarantees. In contrast, our approach guarantees consis-
tency under mild assumptions even when the observed nodes are internal.

A provably sound algorithm known as FCI was developed for lean-
ing maximal ancestral graphs (MAG) (Spirtes, Meek, & Richardson, 1995;
Zhang, 2008).1 A MAG is a mixed graph consisting of both directed and
undirected edges on the set of observable variables that probabilistically
represents the conditional independence among both latent and observable
variables in an accompanying DAG. More precisely, consider any DAG
(e.g., G over V = O ∪ L ∪ S) that encodes a set of conditional independence
relations among nodes in V, where O and L denotes the set of observed and
latent variables, respectively, and S denotes a set of unobserved selection
variables to be conditioned on. Suppose there exists a MAG, M(G), over
O such that for any three disjoint sets of variables A, B,C ⊆ O, A and B
are conditionally independent given C ∪ S in G if and only if A and B are
conditionally independent given C in M(G). In this case, M(G) is said to
probabilistically represent G. FCI algorithm recovers not the latent nodes
and the relations between latent and observed nodes but the MAG on the set
of observable nodes. Our algorithm recovers the graph on both observable
and latent nodes.

Classical approaches to learning latent graphical models, in which nodes
represent random variables, are of the following flavors. Latent cluster
models (LCMs) learn a tree-structured Bayesian network, in which only one

1Soundness is defined as follows: given a perfect oracle of conditional independence,
the algorithm outputs the Markov equivalence class of the true causal maximal ancestral
graph.
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single hidden variable exists (Lazarsfeld & Henry, 1968). Hierarchical latent
class (HLC) models generalize the previous model by allowing multiple
hidden variables, but they confine the observed variables to the leaves of
the tree (Zhang & Kocka, 2004). Since in HLC models, root walking leads to a
marginally equivalent model (two models are marginally equivalent if they
share the same conditional distribution between the observable variables
given the latent variables), it is impossible to learn edge orientation from
the data.2 Furthermore, learning algorithms for such models has a greedy
structure, which is both computationally expensive and not guaranteed to
be consistent.

Other popular learning methods for latent Markov graphical models use
quartet-based distances (Jiang, Kearney, & Li, 2001; Erdos, Steel, Székely,
& Warnow, 1999) to discover the structure.3 Quartet-based methods first
construct a set of quartets for all subsets of four observable nodes and then
combine them to form a latent tree. It is known that the problem of de-
termining a latent tree that agrees with the maximum number of quartets
is NP-hard (Steel, 1992). As a result many heuristics have been developed
(Farris, 1972; Sattath & Tversky, 1977). Ishteva, Park, and Song (2013) pro-
pose a quartet-based approach that uses rank characterization of the tensor
associated with the marginal distribution of a quartet. This characterization
allows them to design a nuclear norm-based test for resolving quartet rela-
tions. Additionally, in practice, quartet-based methods are often much less
accurate than the neighbor-joining (NJ) method (John, Warnow, Moret, &
Vawter, 2003). NJ (Saitou & Nei, 1987) is another distance-based algorithm
that proceeds by repeatedly pairing the two closest nodes from the list by
adding a new latent node as their parent and replacing the pair with the
newly added node. Both NJ and the quartet-based methods rely on the
existence of a notion of distance between nodes of a tree, which may not
exist in many practical scenarios. In this work, we propose a new method
based on a discrepancy measure between the observed nodes, which is not
required to be a distance measure.

Recently the quartet-based approaches were applied to learn linear mul-
tivariate tree models when only the leaves are observed (Anandkumar et al.,
2011). In such trees, nodes are multivariate random vectors. Anandkumar
et al. (2011) further assumed that the conditional expected value of each
node given the parent is a linear function of its parents. Recursive grouping
(RG) (Choi et al., 2011) and Chow-Liu recursive grouping (CLRG) proposed
in Chow and Liu (1968) and Choi et al. (2011) are two other distance-based
learning algorithms that can recover latent Markov graphical models in
which some of the observed nodes are internal. Both RG and CLRG can

2Root walking is an operation on a directed tree that reverses an arrow that goes from
the root to one of its neighbors.

3A quartet is an unrooted binary tree on a set of four observed nodes.
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only recover latent models on a set of hidden and observed random vari-
ables that are jointly gaussian or have a symmetric discrete joint distribution
(Choi et al., 2011). No such restrictions on the joint are required in our ap-
proach.

3 Preliminary

In this section we present the background materials on directed information
graphs.

3.1 Directed Information. Consider a stochastic dynamical system de-
scribed by m random processes X = (X1, . . . , Xm) with joint distribution PX
such that each random process contains n random variables. We denote the
tth random variable in the ith process by Xi,t and the random process Xi
from time 1 up to time t by Xt

i,1. We use underlined characters to represent a
collection of processes; for example, Xt

K,1 is used to denote a set of random
processes with index set K from time 1 up to time t. Using the chain rule
(Schum, 1994) over increasing time indices, the joint distribution can be
factored as

PX =
n∏

t=1

PX1,t ,...,Xm,t |Xt−1
1,1 ,...,Xt−1

m,1
.

Throughout this article, we use PX|Y to denote the conditional distribution
of X given Y = y, PX|Y (X|Y = y). There are many classes of models (e.g.,
stochastic differential equations) for which the joint statistics of all processes
at time t are statistically independent, given the past of all other processes.

Example 1. Consider a dynamical system where the processes evolve over
time by the following coupled differential equations:

dX = f (X,Y)dt + dW,

dY = g(X,Y)dt + dV,

where W and V are independent Wiener processes. For small �, this be-
comes

Xt+� ≈ Xt + � f (Xt,Yt ) + Wt+� − Wt,

Yt+� ≈Yt + �g(Xt,Yt ) + Vt+� − Vt .

In this system, given the full past of the system, (Xt
1,Yt

1), Xt+� is independent
of Yt+�.
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In these strictly causal systems, given the full past, the future of processes
is conditionally independent, and the joint distribution can be simplified to

PX =
n∏

t=1

m∏
j=1

PXj,t |Xt−1
1,1 ,...,Xt−1

m,1
. (3.1)

Using causal conditioning notation introduced by Kramer (1998),4

PX j || X−{ j}
:=

n∏
t=1

PXj,t |Xt−1
1,1 ,...,Xt−1

j,1 ,...,Xt−1
m,1

, (3.2)

we can rewrite equation 3.1 as

PX =
m∏

j=1

PX j || X−{ j}
, (3.3)

where −{ j} := {1, . . . , m} \ { j}. Note that the notation in equation 3.2 is de-
fined analogous to the definition of regular conditional distribution: PX j | X−{ j}

.

Recall that using chain rule, one can rewrite it as

PX j | X−{ j}
=

n∏
t=1

PXj,t |Xt−1
j,1 ,X−{ j}

. (3.4)

Notation 3.2 is defined by excluding the present and the future of X−{ j}
in equation 3.4. Note that we always condition on the past of X j in both
equations 3.2 and 3.4. Let K = {k1, . . . , ks} ⊆ −{ j} be a subset of indices
except j and XK to be the set of processes with index set K. It is possible to
generalize notation 3.2 as

PX j || XK
:=

n∏
t=1

PXj,t |Xt−1
j,1 ,Xt−1

k1 ,1,...,X
t−1
ks ,1

.

In equation 3.2, the random process X j depends on the set of random
processes X−{ j} by one time delay. This notation may be generalized to
d-step delay (d ∈ N). We denote the causal conditioned distribution with
d-step delay as

4Note the slight difference in conditioning upon Xi−1
j,1 in this definition as compared

to Xi
j,1 in the original causal conditioning definition.
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Figure 1: Time dependencies between random processes X and Y for a unit
delay and three-step delay in example 2. Directed edges show the causal con-
ditioned dependencies between variables in process Y and the corresponding
variables in process X.

PX j ||d XK
:=

n∏
t=1

PXj,t |Xt−1
j,1 ,Xt−d

K,1
. (3.5)

In equation 3.5, Xt−1
K,1 stands for (Xt−1

k1,1
, . . . , Xt−1

ks,1
).

Example 2. Let X and Y to be two random processes. In this example, we
compare the causal conditioned (PY||X) with causal conditioned distribution
with three-step delay (PY||3X). Figure 1 illustrates the time interdependencies
between X and Y in these two cases. Directed edges in these figures show
the causal conditioned dependencies between variables in process Y and
the corresponding variables in process X. Note that the intradependencies
for each process are omitted.

It is easy to see that for d = 1, equation 3.5 becomes Kramer’s causal
conditioned distribution 3.2. For simplicity, we will write PX||Y instead of
PX||1Y.

Assumption 1. For the remainder of this article, we only consider a collection of
random processes for which there exists a reference measure φ such that PX � φ

and
d PX

dφ
> 0 (such joint distribution is called positive) and the joint distribution is

strictly causal; it is given by equation 3.3.

Remark 1. Assumption 1 is to avoid degenerate cases that arise with deter-
ministic relationships. For instance, suppose X is a random process with a
continuous distribution and Y represents X passed through a deterministic
invertible system. Then PX,Y is not positive since the distribution of Y given X
is a point mass. Moreover, this assumption holds for any continuous-time
generative model described by coupled stochastic differential equations
such as the one presented in example 1 corresponding to a system, which
is both strictly causal and nondegenerate.
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Denote the Kullback-Leibler divergence for PX and QX as

D(PX||QX) := EPX

[
log

dPX

dQX

]
,

where
dPX

dQX
denotes the Radon-Nikodym derivative. Consider two random

processes Xi and X j and a set of indicesK such thatK ⊆ −{i, j}, then entropy,
the mutual information, and the conditional mutual information between
Xi and X j are given, respectively, by

H(Xi) := EPXi

[
− log PXi

]
,

I(X j; Xi) := EPX j ,Xi

[
log

dPXi|X j

dPXi

]
, (3.6)

I(X j; Xi|XK) := EPXK∪{i, j}

[
log

dPXi|X j,XK

dPXi|XK

]
. (3.7)

Analogously, directed information and conditional directed information
from X j to Xi are defined, respectively, as

I(X j → Xi) := EPX j ,Xi

[
log

dPXi||X j

dPXi

]
, (3.8)

I(X j → Xi||XK) := EPXK∪{i, j}

[
log

dPXi||X j,XK

dPXi||XK

]
. (3.9)

Consequently, the directed information rate and the conditional directed
information rate are defined, respectively, as

I∞(X j → Xi) := lim
t→−∞

1
n − t + 1

I(Xn
j,t → Xn

i,t ),

I∞(X j → Xi||XJ ) := lim
t→−∞

1
n − t + 1

I(Xn
j,t → Xn

i,t ||Xn
J ,t ).

Since in this work, the lengths of processes are assumed to be finite, n < ∞,
the directed information and conditional directed information are finite.
Thus, it suffices to work with equations 3.8 and 3.9. If n → ∞, the same
proof ideas hold by replacing equations 3.8 and 3.9 with the aforementioned
information rates instead.
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3.2 Generative Models and Directed Information Graphs. A directed

graph
−→
G = (V,

−→
E ) is characterized by a set V of vertices (or nodes) and a

set of ordered pairs of vertices, called arrows (or edges)
−→
E ⊂ V × V . An

undirected graph is called connected if there is at least one path between any
two nodes; if there is exactly one path between any pair of vertices, then

it is called a tree. A polytree denoted by
−→
T = (V,

−→
E ) is a directed acyclic

graph (DAG) whose underlying undirected graph, obtained by replacing
all arrows with undirected edges, is a tree. Nodes without any incoming
arrows in a directed tree are called roots. A path between two nodes in an
undirected graph is a sequence of distinct vertices such that every vertex
in the sequence is adjacent to its predecessor and its successor; all nodes
except the end nodes on a path are called internal nodes. Two paths are called
disjoint if they do not have any internal vertex in common. A path of the
from v → · · · → u, on which every edge is an arrow with the arrowheads
pointing toward u, is a directed path form v to u. The sets of parents and

children of a node v in
−→
T are defined, respectively, by

PA(v) :={u ∈ V : (u, v) ∈ −→
E },

CH(v) :={u ∈ V : (v, u) ∈ −→
E }. (3.10)

Node w is called an ancestor of node v in
−→
T if there exists a directed path

from w to v. In this case, v is called a descendant of w.

Definition 1. For a joint distribution a generative model is a function A :
{1, ..m} → P({1, ..m}), (power set of {1, ..m}) such that for each process j ∈
{1, ..m}, j /∈ A( j) and

D(PX|| PA) = 0 ,

where PA :=
∏m

j=1 PX j || XA( j)
.

Definition 2. A generative model graph is a directed graph where each node
corresponds to a random process, and there is an arrow from i to j, for i, j ∈ {1, ..}
if and only if i ∈ A( j). It is called minimal if for each i, A(i) has minimal cardinality.

A generative model graph is basically a graphical representation of the
factorization of a given joint distribution. Although there might exist several
factorizations for a joint distribution, under assumption 1, the minimal
factorization (i.e., generative model) is unique (for details, see Quinn et al.,
2015). This graphical model is similar to the Bayesian network (Pearl, 1988),
since both models depend on the factorization of the joint distribution.
The main difference between the two models is that nodes in a Bayesian



1734 J. Etesami, N. Kiyavash, and T. Coleman

Figure 2: Two possible Bayesian networks for one joint distribution.

network represent random variables, but in a generative model graph, they
are random processes.

Definition 3. A directed information graph is a directed graph over a set of random
processes X where there is an arrow from i to j for i, j ∈ {1, . . . , m} if and only if

I (Xi → X j || X−{i, j}) > 0 . (3.11)

Theorem 1 (Quinn, Kiyavash, & Coleman, 2011). For any joint distribution PX
satisfying assumption 1, the corresponding minimal generative model graph and
directed information graph are equivalent.

In the remainder of this article, we refer to generative model graphs and
directed information graphs interchangeably.

3.3 Bayesian Networks and Directed Information Graphs. Bayesian
networks are directed graphs representing conditional dependencies in a
reduced factorization of the joint distribution. Hence, Bayesian networks
depend on the order variables. Figure 2 shows two possible Bayesian net-
works pertaining to PX,Y,Z.

Note that the Bayesian networks are DAGs, since a variable can have
only an incoming arrow from the preceding variables. Therefore, in general,
DIGs are not in the family of Bayesian networks. However, DIGs and the
Bayesian networks share some similar properties, which we review next.

D-separation, introduced in Verma and Pearl (1991), is a set of graphical
conditions by which conditional independence relations could be read from
a DAG (e.g., a Bayesian network). D-separation has the following implica-
tion: If two sets of nodes U and W are d-separated in a DAG by a third
set Z (excluding U and W), the corresponding variable sets XU and XW are
independent given the variables in XZ:

I(XU; XW | XZ) = 0.
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These independence relations comprise the global Markov property. Before
defining d-separation in DAGs, we introduce the concept of a collider. In a
DAG, a non-endpoint vertex c on a path is said to be a collider if both edges
are directed toward c on this path. For example, X in Figure 2a is a collider
on the path Y → X ← Z.

Definition 4. Let
−→
G = (V,

−→
E ) be a DAG and U, W, and Z be three disjoint

subsets of V. Z d-separates U from W, if for every path (not necessarily directed)
from a node in U to a node in W, there exists a node c such that either

1. c is not a collider and it belongs to Z or
2. c is a collider and neither c nor any of c’s descendants are in Z.

Remark 2. It is possible that two DAGs,
−→
G 1 and

−→
G 2 with the same vertex

set capture the same independence relations, that is, for all disjoint sets U,

W, and Z, where U and W are nonempty, Z d-separates U from W in
−→
G 1 if

and only if Z d-separates U from W in
−→
G 2. In this case, it is said that

−→
G 1 and−→

G 2 are Markov equivalent. For example, two DAGs in Figure 2 are Markov
equivalent. Ali, Richardson, and Spirtes (2009) give simple conditions for
determining whether two DAGs are Markov equivalent.

Analogously, the causal independences in a DIG can be determined
through a graphical separation criterion that we call c-separation.

Definition 5. Let
−→
G = (V,

−→
E ) be a DIG and U and Z be two disjoint subsets of

V, and w ∈ V \ (U ∪ Z). Z c-separates U from w if for every path between a node
in U and w there is a node in Z ∪ w with an outgoing arrow.

For example, in Figure 3, Z c-separates U from W. Notice that c-
separation, unlike d-separation, is not symmetric; if Z c-separates U from W,
it is not necessary that Z c-separates W from U. A directed graph is said to
satisfy a global causal Markov property if each c-separation corresponds to
a causal independences. In other words, if there exist three disjoint subsets
U, {w} and Z such that Z c-separates U from w, the corresponding process
sets XU and Xw are causally independent given the processes in XZ:

I(XU → Xw|| XZ) = 0.

Theorem 2. For any joint distribution PX that satisfies assumption 1, the DIG is
a minimal directed graph with global causal Markov property.

Proof. See appendix A.

Next, we study the relationship between the DIG of a set of random pro-
cesses and the independence map among the underlying random variables.
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Figure 3: An example of DIG with four random processes.

Figure 4: The DIG and its underlying variable dependences.

Let V be a network of dependent variables and σ be an ordering {v1, . . . , vm}
of the elements in V. The boundary strata of this network relative to σ is an
ordered set of subsets of V, (B1, B2 . . .), such that each Bi is a Markov bound-
ary of vi with respect to the set Vi := {v1, . . . , vi−1}; that is Bi is a minimal set
satisfying Bi ⊆ Vi and vi is independent of Vi \ Bi given Bi. The DAG created
by designating each Bi as parents of vertex vi is called a boundary DAG of
this network relative to σ . By Verma and Pearl (1988), boundary DAGs are
Bayesian networks (minimal independence maps under d-separation).

A simple observation is that due to the nature of random processes
there already exists an ordering among the underlying variables, which is
time. Hence, if X is a set of random processes that satisfies assumption 1

with the corresponding minimal generative model graph
−→
G , then one can

define a unique boundary DAG for the underlying variables relative to time
ordering. Notice that the boundary DAG relative to time ordering is unique
since there are no simultaneous influences between variables and, therefore,
any causal ordering results in the same DAG. Now, by the definition of a
minimal generative model graph, the Markov boundary of the tth variable

in process Xi contains Xj,t′ , t′ < t if and only if X j is a parent of Xi in
−→
G

or equivalently by theorem 1 in the corresponding DIG. For example, in
Figure 4, Yt is in the Markov boundary of Xt+1; hence, Y must be a parent
of X in the corresponding DIG.
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Figure 5: The DIGs of example 3. (a) The DIT corresponding to PX. (b) The
DIT corresponding to PX\{Y2}. (c) The DIG corresponding to PO. Latent nodes are
indicated by circles.

4 Minimal Latent Tree

Consider a set of random processes X for which the directed informa-

tion graph is a polytree
−→
T = (V,

−→
E ), abbreviated as DIT. Denote O =

{X1, . . . , Xm} as the set of observable processes, and their corresponding
nodes in the DIT is denoted by O. Likewise, denote L = {Y1, . . . , Yk} as the
set of latent processes, and their corresponding nodes are denoted by L.
Briefly, X = O ∪ L is the set of random processes, and V = O ∪ L is their
corresponding nodes in the DIT.

A probability distribution PO is called polytree decomposable if there exists
a joint distribution of the form PO∪L that satisfies assumption 1 and its
corresponding DIG is a polytree. In this case, PO∪L is called a polytree
extension of PO.

Example 3. Consider an array of five random processes X =
(X1, X2, X3, Y1, Y2) with the joint dynamics

X(t) = X(t − 1)A + X(t − 2)B + W(t),

where X(t) is the row vector (X1,t, X2,t, X3,t,Y1,t,Y2,t ), and A and B are 5 × 5
real matrices such that their nonzero entries are A(4, 2), A(1, 4), A(4, 5),
and B(4, 3) and they are all equal to one. W is a set of five jointly inde-
pendent random processes. Figure 5a illustrates the corresponding DIG of
the whole system. Figures 5b and 5c are obtained by marginalizing over Y2
and {Y1, Y2}, respectively. Since there exists at least one joint distribution
such that its corresponding DIG has a polytree structure, PO is polytree
decomposable, where O = {X1, X2, X3}.

A latent node h ∈ L is called redundant if the DIG corresponding to
the joint distribution of observed and latent nodes excluding Yh, (PO,L\{Yh})
remains a forest, that is, a collection of polytrees. For instance, in example 3,
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Figure 6: Directed information graphs of example 4.2.

Y2 is a redundant hidden node. A latent directed information polytree
(LDIT) is called minimal if it has no redundant hidden nodes (Pearl, 1988).5

The polytree in Figure 3b is minimal.

Assumption 2. We assume that the joint distribution of the set of observed
processes is polytree decomposable.

The next example demonstrates cases in which one is polytree-
decomposable and the other is not.

Example 4. Consider a set of three observable processes X comprising a
physical, dynamical system, such that the evolution of the processes over
time satisfies the following stochastic equations:

X1(t) = X3(t − 1)/3 + V1(t),

X2(t) = X1(t − 1)/2 + V2(t),

X3(t) = X2(t − 1)/2 + V3(t), (4.1)

where (V1,V2,V3) are three exogenous, independent processes. Figure 6a
demonstrates the corresponding DIG. For this small example, by checking
all possible sets of auxiliary variables, we can conclude that there is no set
of auxiliary variables L such that PX∪L both satisfies assumption 1 and its
corresponding DIG is a polytree. Now, consider the following discrete-time
dynamical system with the corresponding DIG shown in Figure 6b:

X1(t) =V1(t),

X2(t) = X1(t − 2)/2 + V4(t − 1)/2 + V2(t),

X3(t) = X1(t − 2)/3 + V4(t − 1)/3 + V3(t), (4.2)

5A redundant hidden node in Pearl (1988) is defined as a hidden node that the joint
distribution without it remains a tree instead of a forest.
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where (V1,V2,V3,V4) are exogenous, independent processes. By defining
Y(t) := X1(t − 1) + V4(t), we can obtain a DIT as shown in Figure 6c.

4.1. Some Properties of a Minimal LDIT. This section presents some
properties of the DIT and the minimal LDIT, which will be used in section 5
for structure learning.

Lemma 1. Let
−→
T = (V,

−→
E ) be the DIT corresponding to the joint distribution

of a collection of random processes X. Let X ∈ X and A1 and A2 be two disjoint
subsets of the parents of X, that is, PA(X). Then XA1

and XA2
are independent.

Proof. See appendix B.

Lemma 2. In a minimal LDIT, all hidden nodes have at least two children.

Proof. See appendix C.

Lemma 3. Consider a collection of random processes X with a DIT T = (V,
−→
E ).

If there is a directed path from j to i of length d, that is, there is a sequence of nodes
(i1, . . . , id−1) where j is the parent of i1, ik is the parent of ik+1 for (1 ≤ k ≤ d − 2),
and id−1 is the parent of i, then

D(PXi |X j
|| PXi ||d X j

) = 0 . (4.3)

Proof. See appendix D.

Lemma 3 implies that by walking along the path between two random
process Xi and X j, each time we pass a node, the time dependency between
Xi and X j is shifted by at least one unit. In the next sections, we will see
that these time delays will help us recover the structure of a minimal LDIT.
Time delays have also been used for infernce tasks in network forensic
applications such as traffic analysis (Shmatikov & Wang, 2006; Kiyavash &
Coleman, 2009; Kadloor, Kiyavash, & Venkitasubramaniam, 2012a, 2012b).

Lemma 4. Suppose there exist two disjoint directed paths from W to X and Y in
a minimal LDIT. Then

D
(

PX,Y,W||PW PX||W PY||W
)

= 0. (4.4)

Proof. See appendix E.
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Lemma 5. In a minimal LDIT, if the root ancestors of two nodes are disjoint, then
they are independent.6

Proof. See appendix F.

Another property that plays an essential role in learning the latent struc-
ture is what we call sibling resemblance.

Definition 6. A collection of random processes X with a corresponding minimal

LDIT,
−→
T = (V,

−→
E ), satisfies sibling resemblance property, if for every pair (Xi , X j ),

(i �= j), of sibling with common parent Xk , the following property holds: If there
exists a time s such that I (Xs

i,1; Xk) > 0, then I (Xi,s; X j |Xs−1
i,1 ) > 0

This property simply states that in a minimal LDIT, the information
inherited from a node to its children is not independent. Many dynamical
systems such as autoregressive models satisfy this property. The next exam-
ple illustrates the importance of this property for learning latent polytrees.

Example 5. Consider a minimum LDIT with two observable and one latent
random processes denoted by X = {X1, X2, Y1}. Let X1,t+1 = 2Y1,2t−1 + ε1,t+1
and X2,t+1 = −Y1,2t + ε2,t+1, where ε1,t , ε2,t , and Y1 are jointly independent.
The corresponding DIG of this system is X1 ← Y1 → X2. Suppose that {Y1,2t}
and {Y1,2t−1}, that is, the even and odd subprocesses of Y1 are independent.
In this case, X1 and X2 are independent, and recovering the structure of the
system given {X1, X2} is impossible. This system does not satisfy the sibling
resemblance property since X1 and X2 are siblings with Y1 as their common
parent and I(X2

1 ; Y1) > 0, (s = 2), but I(X1,2; X2|X1,1) = 0.

4.2. Presence of Simultaneous Influences. Excluding simultaneous in-
fluences helps us write equation 3.1, which consequently leads to the defi-
nition of generative model graphs in section 3.2. Now the question is, What
if there were in fact simultaneous influences?

In this section, we show that if there are simultaneous influences between
processes, the corresponding DIG is not a polytree and hence cannot be
recovered by the proposed method in this article. To make the statement
rigorous, we need to modify the definition of the DIG by using the original
Kramer’s causal conditioning that allows for simultaneous influences. For
K ⊆ −{ j}, define

P̃X j || XK
:=

n∏
t=1

PXj,t |Xt−1
j,1 ,Xt

K,1

6The set of roots that are ancestors of a given node in a directed tree is called root
ancestors of that node.
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and the modified conditional directed information as

Ĩ
(

X j → Xi||XK

)
:= EPXK∪{i, j}

⎡⎣log
dP̃Xi||X j,XK

dP̃Xi||XK

⎤⎦ .

Using the above measure, we are able to define the modified directed infor-
mation graph (MDIG) that captures the simultaneous effects as such: there
is an arrow from node i to node j for i, j ∈ {1, . . . , m} in the MDIG if and
only if

Ĩ
(

Xi → X j|| X−{i, j}
)

> 0 .

Theorem 3. Let
−→
T to be an MDIG over a set of random processes X, which is a

polytree, and let PA(X) to be the parent set of X in
−→
T . Then

D
(

P̃X|| XPA(X)
||PX|| XPA(X)

)
= 0.

Proof. See appendix G.

A consequence of the above result is that the corresponding DIG of
a system with simultaneous influences is not a polytree. This is because
when the corresponding MDIG of a dynamical system is a polytree, based
on the above result, all the simultaneous influences can be dropped.

5. Recovery of Latent Trees

A simple observation about a directed tree is that each pair of nodes that
are the descendants of the same root has a unique common ancestor. In this
section, we define a notion of distance on a polytree in order to determine
the distance of each pair of nodes to their common ancestor, if it exists.
Moreover, we will show that given these distances for a subset of nodes,
the graph is uniquely recoverable.

Definition 7. Given a polytree
−→
T = (V,

−→
E ) with the root set R, every function

γ : V × V → R that satisfies the following criterion is called a discrepancy on
−→
T .

γ assigns a real number to the path from v1 to the common ancestor of v1 and v2,
such that:

1. γ (v1, v2) = 0 iff either v1 is the ancestor of v2 or v1 = v2.
2. If the common ancestor of v1 and v2 is the same as the common ancestor of

v1 and v3, then

γ (v1, v2) = γ (v1, v3).
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Figure 7: The directed tree of example 6.

3. If the common ancestor of v1 and v2 is on the path from the common ancestor
of v1 and v3 to v1, then

γ (v1, v2) < γ (v1, v3).

4. γ (v1, v2) < 0 iff v1 and v2 have no common ancestor.

The image of such these functions can be presented by the discrepancy
matrix:

�V :=
[
γr(vi, v j)

]
, vi, v j ∈ V.

Note that for a given tree, the discrepancy matrix is not unique. Any function
that satisfies the conditions in definition 7 is a valid discrepancy measure.

Example 6. Consider the polytree depicted in Figure 7 with roots {v5, v6}
and the following discrepancy matrix:

�V =

⎛⎜⎜⎜⎜⎜⎜⎝
0 2 3 1 3 4
0 0 −2 0 −1 1
1 −3 0 1 1 −3
0 1 2 0 2 3
0 −1 0 0 0 −2
0 0 −1 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

For instance, looking at the third row, this particular discrepancy function
assigns 1 to the path from v3 to its common ancestor with v1, that is, v5. Since
v2 and v3 have no common ancestor, �V (3, 2) < 0.

We prove that the discrepancy matrix suffices to uniquely learn the topol-

ogy of a polytree
−→
T = (V,

−→
E ). We present an algorithm that learns the struc-

ture of a polytree given the discrepancies between all the pairs of observed
nodes.

Definition 8. In a polytree
−→
T = (V,

−→
E ), we call a subset L ⊂ V learnable if

every node v ∈ L has at least two outgoing arrows. We call O := V \ L the set of
observed nodes.
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For example, {v5} is a learnable subset of the polytree shown in Figure 7.
From definition 8, if L is a learnable subset of a polytree, then all the leaves
belong to O = V \ L.

Theorem 4. Let
−→
T = (V,

−→
E ) be a polytree with the root set R, and let L ⊆ V be

a learnable subset. Then the existence of a discrepancy matrix ΓO for O = V \ L

suffices for learning
−→
T .

Proof. See appendix H.

Next, inspired by the steps in the proof of theorem 4, we present an
algorithm for structure learning of polytrees.

5.1. Structure Recovery Algorithm. Here, we introduce an algorithm
to learn a latent polytree. The rationale of the algorithm follows the three
main steps of proof of theorem 4 as described in the following, The first
step is to discover the number of roots |R| of the underlying polytree and
all their descendants in the set of observed nodes (O) given the discrepancy
matrix �O. This can be done by fixing a node v ∈ O and finding a max-
imal subset of O containing v in which every pair of nodes has positive
discrepancy (see algorithm 1). The next step is to recover the underlying
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tree for every root r ∈ R given its discovered descendants in the set O.
This can be done using the recursive approach summarized in algorithm
2. The last step is to merge the recovered trees from the previous step
to recover the underlying polytree. This too is possible, since if two re-
covered trees are connected, their common subgraph is also a tree; thus,
it can be learned using algorithm 2. Algorithm 3 describes the required
steps.

Next, we present our algorithm that learns a polytree given a discrepancy
matrix on its observed nodes using the three main steps noted. A simple



Learning Minimal Latent Directed Information Polytrees 1745

example that illustrates the algorithm is also provided. First, we need the
following definition:

Definition 9. A tree merger is an operator that takes two directed trees
−→
T 1,

−→
T 2

and a given subtree of both of them, say,
−→
T 3, and merges them at

−→
T 3. We denote

this operation by
−→
T 1 ◦ −→

T 2|−→T 3

.

Figure 8 depicts one such tree merger.

Polytree (�O) presents an algorithm for learning the polytree
−→
T (V,

−→
E )

with the root setR given the discrepancy matrix �O on its observed nodes O.
First, it calls the subroutine Separation(�O), which finds subsets Ois, where
O = ∪iOi such that each subset corresponds to observed nodes in a directed
tree with a single root. Each of these single rooted subtrees can be learned
by algorithm Tree(O). To complete the task, algorithm Polytree(�O) must
connect these subtrees to recover the original polytree. This is done by using

the fact that if a polytree
−→
T and a directed tree

−→
T i have an intersection, their



1746 J. Etesami, N. Kiyavash, and T. Coleman

Figure 8: An example that illustrates the merger operator between two directed
trees.

Figure 9: (a) The steps and outputs of Tree({v1, v2, v4, v6}). (b) The steps and
outputs of Tree({v1, v3, v4}). (c) Merging the first two directed trees by sharing
their common subtree, which is obtained by Tree({v1, v4}).

intersection will be a directed tree. Thus, it also could be learned by algo-
rithm Tree(O). After learning the intersection part, algorithm Polytree(�O)

uses the tree merger operator defined in definition 9 to connect these to-

gether. In Algorithm Tree(O),
−→
T 1 ⊕ −→

T 2(h) is an operator that connects a

directed tree
−→
T 1 = (V1,

−→
E 1) with root r1 to a polytree

−→
T 2 = (V2,

−→
E 2) given

a leaf of
−→
T 2, h, by simply substituting h in

−→
T 2 by

−→
T 1. More precisely,

−→
T 1 ⊕ −→

T 2(h) :=
(
V1 ∪ V2 \ {h},−→E

)
,

where

−→
E = −→

E 1 ∪ {(PA2(h), r1)} ∪ −→
E 2 \ {(PA2(h), h)},

and PA2(h) is given by equation 3.10, and it represents the set of parents of

h in
−→
T 2. Figure 9b depicts an example.
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Example 7. Consider the polytree in example 6. Assume O =
{v1, v2, v3, v4, v6}. Then, by the definition V \ O = {v5} is a learnable sub-
set. Given the discrepancy matrix

�O =

⎛⎜⎜⎜⎜⎝
0 2 3 1 4
0 0 −2 0 1
1 −3 0 1 −3
0 1 2 0 3
0 0 −1 0 0

⎞⎟⎟⎟⎟⎠ ,

algorithm 3 calls Separation to find all subtrees with single roots, which are
O1 = {v1, v2, v4, v6} and O2 = {v1, v3, v4}. As seen in Figure 7, the subtrees
induced by O1 and O2 each have a single root.

Subsequently, algorithm 3 calls Tree to build the subtrees. Figures 9a
and 9b illustrate these subtrees. For instance, the subtree in Figure 9a is
obtained as follows: Algorithm 2 computes Bvi

s for i ∈ {1, 2, 4, 6} at step 4.
Since Bv2

= {v1, v4} �= O1 \ {v2}, the condition in step 5 is not satisfied and
algorithm 2 will jump to step 12 and choose w to be v2. In steps 13 and 14,
the algorithm recursively calls itself, but this time given {v1, v2, v4} and
{v2, v6}, respectively. Since the subtree induced by {v2, v6} is a star, it will
be constructed in steps 5 to 10. On the other hand, the subtree induced by
{v1, v2, v4} is not a star. It is learned by breaking it into two stars, as shown
in Figure 9a.

Finally, algorithm 3 must reconnect the subtrees depicted in Figures 9a
and 9b. To do so, it finds the common subtree between them at steps 8 and
9, and it merges the trees in Figures 9a and 9b together at step 11. The final
result is shown in Figure 9c.

6. Discrepancy Measure for Latent Directed Information Trees

In this section, we establish a discrepancy measure for learning minimal
directed information trees. Recall that lemma 3 states that the lag between
random processes grows by walking along the directed paths in a minimal
DIT. This allows us to have the following definition in such graphs:

Definition 10. For any pair of random processes (X j , Xk) ∈ O × O, we define the
directed measure from X j to Xk denoted by γ (X j , Xk) as follows. If I (Xk; X j ) = 0,
then γ (X j , Xk) = −1, and

γ (X j , Xk) :=

⎧⎨⎩max
d≥0

{
d : I

(
Xd

j,1; Xk

)
= 0
}

j �= k

0 j = k.

(6.1)

Note that I
(

X0
j,1; Xk

)
= 0.
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Theorem 5. Let X = O ∪ L be a collection of random processes that form a min-

imal LDIT,
−→
T = (V,

−→
E ), where V = O ∪ L. If X satisfies assumptions 1, 2, and

the sibling resemblance property, then the directed measure defined above is an
admissible discrepancy and L is a learnable subset.

Proof. See appendix I.

7. Sample Complexity for Empirical Estimator

This section studies the complexity of the proposed algorithm to recover
the minimal LDIT given N independent and identically distributed (i.i.d.)
samples of the observed random processes, {O(1), . . . , O(N)}, where O(q) =
{X(q)

1 , . . . , X(q)
m } denotes the qth sample from all the m processes. X(q)

i ∈ X n

for each i. Consider the case that the alphabet set X is finite. In order to learn
the minimal LDIT, we need to estimate the directed measures introduced in
the previous section between all pairs of observed processes. To do so, first
we estimate the joint distributions for each pair (Xi, X j) using the empirical
estimator defined as

P̂Xi,X j
(xi, x j) := 1

N

N∑
q=1

I{
(xi,x j )=(X(q)

i ,X(q)

j )
}, (7.1)

where (xi, x j) ∈ X n × X n and I is the indicator function. Using the empirical
distribution of equation 7.1, we can compute the empirical entropies and,
consequently, the empirical mutual information.

Lemma 6. Given N i.i.d. samples of two random processes, X1 ∈ |X |d1 and X2 ∈
|X |d2 , d1, d2 ≤ n, we have

P
(|I (X1; X2) − Î (X1; X2)| ≥ ε

) ≤ 6|χ |2n e−Nξn(ε),

where

ξn(ε) = 2 exp

⎛⎜⎜⎝ 2 log
ε

3|χ |2n

log
ε

3|χ |2n
− 1

log
ε

3|χ |2n log
3|χ |2n

ε

⎞⎟⎟⎠ , (7.2)

and ξn(ε) > 0.

Proof. See appendix J.

As long as there exists an estimator for the mutual information Î(· ·),
such as the empirical estimator in equation 7.1, we can estimate the directed
measure, equation 6.1, from Xi to X j by estimating Î(X j; Xd

i,1) for d = 1, . . . , n.
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After choosing an appropriate threshold ρ > 0, our estimate of directed
measure will be the smallest d for which Î(X j; Xd

i,1) > ρ:

γ̂ (Xi, X j) := min{d : Î(X j; Xd
i,1) > ρ}. (7.3)

Theoretically, the best possible threshold is

ρ∗ := min
i �= j

{
I(X

γ (Xi,X j )+1

i,1 ; X j)

}
. (7.4)

The next theorem presents a concentration bound for our estimate.

Theorem 6. Given N i.i.d. samples of two random processes X1 and X2 each of
length n, and threshold 0 < ρ ≤ ρ∗ in equation 7.4, we have

P
(
γ (X1, X2) �= γ̂ (X1, X2)

) ≤ 6n|χ |2n e−Nξn(ρ),

where ξn(·) is given in equation 7.2.

Proof. Using definition 7.4, one can show {γ (X1, X2) �= γ̂ (X1, X2)} ⊆⋃n
k=1{|Ik − Îk| ≥ ρ}, where

Ik := I(Xk
1,1; X2), Îk := Î(Xk

1,1; X2).

Applying the union bound and lemma 6 concludes the proof.

Most of the practical dynamical systems have finite memory, that is,
they have finite Markov order. In such scenarios, the sample complexity
reduces extensively. More precisely, consider a dynamical system with finite
Markov order p; then in order to estimate I(Xd

i,1; X j), it suffices to estimate
the estimating mutual information between two random processes each of
length at most p + 1. This is true because for a process X j of length n and
finite Markov order p, we have

H(X j) =
n∑

t=1

H(Xj,t |Xt−1
j,t−p) =

n∑
t=1

H(Xt
j,t−p) − H(Xt−1

j,t−p). (7.5)

Using the result of lemma 6, theorem 6, and equation 7.5, we obtain the
following sample complexity for a network with finite Markov order:

Corollary 1. Given N i.i.d. samples of two random processes X1 and X2, each of
length n with finite Markov order p, and threshold 0 < ρ ≤ ρ∗ in equation 7.4, we
have

P
(
γ (X1, X2) �= γ̂ (X1, X2)

) ≤ 6n2|χ |2p+2 e−Nξp+1(ρ/n)
.
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Let
−̂→
T N = (V̂N,

−̂→
E N) denote the reconstructed polytree using the empir-

ical directed measures, equation 7.3, given N i.i.d. samples from the observ-

able processes and assume that the true minimal LDIT was
−→
T = (V,

−→
E ).

Define the error event as

{−→T �≡ −̂→
T N} := {V �= V̂N} ∪ {−→E �= −̂→

E N}.

That is, an error occurs in the reconstruction algorithm if the set of con-

structed nodes and edges is not precisely that of the true polytree
−→
T .

Corollary 2. Consider a minimal LDIT X = O ∪ L consisting of m observable
nodes. Given N i.i.d. samples from each of the observable processes,

P

(−→
T �≡ −̂→

T N

)
≤ 12

(
m
2

)
n|χ |2n e−Nξn(ρ),

where 0 < ρ ≤ ρ∗ and ξn(·) is given in equation 7.1.

Proof. Theorem 4 states that given the discrepancies between all pairs of ob-

served nodes,
−→
T is recoverable. Since there are m such nodes, 2

(m
2

)
directed

measures need to be estimated. Theorem 6 and union bound establish the
result.

8. Experimental Results

In this section, we present some experimental results for both synthetic
linear system and nonlinear system, and a real data set.

8.1. Autoregressive Model. We simulated a network of 14 processes
corresponding to a polytree with three roots in which four processes were
latent. We observed N ∈ {2000, 4000} i.i.d. samples from every observed
process, each of length n = 20. They were modeled as zero-mean multi-
variate normal autoregressive time series such that Zt =∑3

i=1 AiZt−i + Wt ,
where Zt, Wt ∈ R

14, and Ai ∈ R
14×14. Wis were generated i.i.d. gaussian with

mean zero and variance one. The nonzero entries of Ais are given in Table 1.
The first four processes of Z denoted by (Y1, . . . , Y4) were the latent ones.

Mutual information between two jointly gaussian random processes X

and Y is given by (Cover & Thomas, 2012) I(X; Y) = −0.5 log
|�X,Y|

|�X||�Y| , where
�X is the covariance matrix of process X, and �X,Y is the covariance matrix
of (X, Y). Hence, we were able to estimate the discrepancies equation 7.3,
by estimating the covariance matrices between the observed processes.
Figures 10a and 10b illustrate the recovered structure for N = 2000 and
N = 4000, respectively.
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Table 1: Nonzero Coefficients of the AR Model.

A1 A1(1, 1) = 1, A1(2, 1) = 1, A1(2, 2) = 0.5, A1(2, 5) = √
2/2, A1(3, 4) = 1,

A1(5, 5) = 1, A1(6, 1) = −2, A1(8, 8) = 1, A1(8, 7) = 0.1, A1(10, 10) = 0.3,
A1(12, 12) = √

2, A1(13, 13) = −0.2, A1(13, 3) = −1, A1(14, 5) = 0.2.

A2 A2(3, 3) = −1, A2(5, 5) = 0.2, A2(7, 7) = √
2, A2(8, 8) = 1, A2(8, 7) = 0.2,

A2(9, 9) = 3, A2(9, 2) = 2.5, A2(10, 4) = −1, A2(11, 11) = 1, A2(12, 3) = −√
2.

A3 A3(4, 2) = √
3, A3(6, 6) = 1, A3(8, 6) = 0.6, A3(11, 4) = −2.

Figure 10: Recovered polytree of the AR model. Latent nodes are indicated by
circles.

To compute each directed measure pair γ jk, we estimated quantities
f j,k(d) := Î(Xd

j,1; Xk), for 1 ≤ d ≤ 20 using the above expression for the mu-
tual information. If for all 1 ≤ d ≤ 20, f j,k(d) is less than τ , a sufficiently
small threshold (in this example, τ = 0.05), we set the directed measure
from j to k, γ j,k to −1. Otherwise it is set to equal a value d∗, where d∗ is
the first value at which f j,k(d) makes a significant jump. That is, f j,k(d

∗) is
greater than its preceding values { f j,k(i), i < d∗}. This means ρ in section 7
was set to equal f j,k(d

∗ − 1).
We see cycles for small number of samples because of estimation errors.

When the number of samples is not sufficient to estimate the entries of the
discrepancy matrix correctly, the resulting discrepancy matrix will violate
some constraints in definition 7, particularly constraint 3.2, which will en-
force the algorithm to add cycles in order to be consistent with the estimated
discrepancy matrix.

8.2. A Nonlinear Model. We simulated a network of seven processes,
which formed a polytree with two roots in which two processes were latent.
Denoting the latent processes with Y and the observed ones with X, the
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Figure 11: Recovered polytree of the nonlinear model. Latent nodes are indi-
cated by circles.

model is expressed as

Y1(t) =Y1(t − 3) + 0.1Y1(t − 2)2 + ζ1(t),

X1(t) = X1(t − 1)2/
√

2 − 0.1|ζ2(t)|,
Y2(t) =Y2(t − 1) − X1(t − 1) + 1.5

√|Y1(t − 1)| + ζ3(t),

X2(t) =−2Y2(t − 1) + 0.3
√

|X2(t − 3)|3 + ζ4(t),

X3(t) = 2X3(t − 2) − 0.2Y2(t − 1) + ζ5(t),

X4(t) = X4(t − 1) +√|2X4(t − 2)| − Y1(t − 1)

+ 2Y1(t − 2) + 0.7 log |Y1(t − 3)| + ζ6(t),

X5(t) = 3X5(t − 2) + 2.5X4(t − 2) + ζ7(t),

where ζis were generated i.i.d. gaussian with mean zero and variance one.
The observed variables {X1, . . . , X5} were each of length n = 20, and N ∈
{103, 104} number of samples from each of them was collected. The directed
measures were estimated using equation 7.3 and the mutual information
was estimated using the 1-nearest neighbour method in Kraskov, Stögbauer,
and Grassberger (2004). The same thresholding procedure of section 8.1
was used to decide whether the estimated mutual information are zero or
positive. The recovered networks are depicted in Figure 11.

8.3. Market Analysis. As an example of how our approach may dis-
cover causal structure in real-world data, we analyzed the causal relation-
ship between stock prices of 10 technology companies on the New York
Stock Exchange sourced from Google Finance for 20 market days (March 3,
2008–March 28, 2008). In this simulation, we assumed that the underlying
causal structure did not change during the sampling period. Furthermore,
we assumed that influences took a business day to propagate among the
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Figure 12: The polytree of the market data. Latent nodes are indicated by circles
in panel b.

stocks. Hence, the difference between, t and t + 1 is one business day. To
obtain i.i.d. samples, the price of each stock was sampled every 2 minutes
during a business day. This amounted to N = 200 number of i.i.d. samples
for each stock and n = 20.

For this experiment, we used the Black-Scholes model (Black & Scholes,
1973) for the market, in which the stock prices are modeled using a set of
coupled stochastic partial differential equations. This model allows model-
ing the logarithm of the stocks prices as an autoregressive model (Marček,
1998). Thus, the directed measures were estimated similar to section 8.1
from the logarithm of the stock’s prices.

Since the underlying true DIG of these 10 companies is not necessarily
a polytree, we first approximated the DIG graph of the network by the
best-directed tree, where “best” is in the sense of minimizing the Kullback-
Leibler (KL) divergence between the true joint and the one resulting from
the directed tree approximation. Quinn et al. (2013) showed that the optimal
approximate directed tree maximizes the sum of pair-wise directed infor-
mation terms. Thus, to obtain the best tree approximation, we estimated
the pair-wise directed information and found the maximum spanning tree.
As depicted in Figure 12a, the approximation identified two disjoint trees.
In order to obtain a polytree, we connected the two subtrees by the arrow
with maximum directed information weight between the nodes of the two
subtrees. This edge was (HP,EMC), as shown in Figure 12b.

HP and IBM are the roots in polytree depicted in Figure 12b. This suggests
that they had significant influences on the other companies’ stock prices
during 2008. In fact, Gartner, Inc. had ranked IBM as the worldwide share
leader in the enterprise portal software market based on total software
revenue.7 Furthermore, HP was the global PC market share leader during
the same period, followed by Dell Inc.8 Another observation is the detected

7IBM, https://www-03.ibm.com/press/us/en/pressrelease/24507.wss.
8Gartner, http://www.gartner.com/newsroom/id/856712.
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Figure 13: Recovered polytree of the market.

influence of Apple on Intel and Microsoft. Although Apple had begun using
Intel processors in its products in 2006, it was only in 2008 that it released
MacBook Air and upgraded the processors of MacBook and MacBook Pro to
Intel core 2 Duo Penryn, causesing Intels stock price to increase. The arrow
from Apple to Microsoft might be a result of the following phenomenon:
during 2007–2008, Apple’s Mac OS X posted its biggest gain, while the
Windows OS market share dove below 90% for the first time.9

To test out the latent learning algorithm, we removed the data for Apple,
HP, and Dell in the polytree of Figure 12b and ran our algorithm with the
data from the remaining seven companies. We used the same thresholding
procedure of section 8.1 to obtain the directed measures. The estimated
discrepancy matrix is given in equation A.1 and the recovered polytree
is shown in Figure 13. The algorithm successfully recovered the hidden
nodes, but it added one spurious edge. As a result, the recovered structure
is not a polytree. This could be predicted by investigating the estimated
discrepancy matrix in equation 8.1. Since entries {(In,Or),(Go,Or),(Ms,Or),
(Go,Xr),(Or,Go),(Or,Ib),(Xr,Go),(Xr,In),(Xr,Ms)} are positive, when they
should have been −1 due to the fact that these pairs have no common
ancestor in Figure 12b. The reason for this may be due to estimation error
resulting from an insufficiency of the number of samples or the fact that the
true underlying graph is not a polytree.

Em Go In Ms Ib Or Xr

�V =

Em
Go
In
Ms
Ib
Or
Xr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 1
3 0 2 1 3 1 1
2 1 0 1 2 1 −1
2 0 1 0 2 1 −1
0 0 0 0 0 −1 −1
2 1 −1 −1 1 0 1
2 1 1 1 −1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (8.1)

9http://www.computerworld.com/article/2529379/microsoft-windows/windows-
market-share-dives-below-90–for-first-time.html.
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9. Conclusion

This work presents a new approach for learning latent polytrees when a
discrepancy measure is available for the observed nodes. This procedure
may be applied to learning latent directed information polytrees from the
samples of observed processes. Our algorithms produces a matrix of integer
values based on the samples and uses the elements of the matrix to discover
the hidden nodes and the connections between the hidden and observed
nodes.

Appendix A: Proof of Theorem 2

Suppose Z c-separates U from w in a DIG. Then we need to show

I
(
XU → Xw||XZ

) = 0.

Let A := PA(Xw) \ Z be the parent set of w except the ones that are already
in Z. By the definition of DIG, we have

I
(
XU → Xw||XA, XZ

) = 0. (A.1)

If for any t,

D
(

PXt
A,1| Xt

U∪{w}∪Z,1
|| PXt

A,1| Xt
{w}∪Z,1

)
= 0. (A.2)

Then equations A.2 and A.1 will imply the result. In order to show equation
A.2, we use the d-separation criterion for the corresponding boundary DAG
introduced in section 3.3. Notice that every path from a node in U and a
node in A contains at least a node in Z ∪ {w} with an outgoing arrow, which
implies that every path in the corresponding boundary DAG between Xt

A,1

and Xt
U,1 is d-separated by Xt

{w}∪Z,1. Consequently, equation A.2 holds.

Appendix B: Proof of Lemma 1

We consider two cases. First, if A1,A2 ⊂ R (the root set). Using the chain
rule, we have

PX =
n∏

t=1

PXt |Xt−1
1

=
n∏

t=1

∏
a∈A1

∏
b∈A2

PXa,t |Xt−1
1 ,XS(a),t

PXb,t |Xt−1
1 ,XS(b),t

PX−A1∪A2 ,t |Xt−1
1

, (B.1)
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where for every x, S(x) ⊆ −{x} such that the above equation holds. Note
that if we consider no simultaneous influences, then S(x) = ∅ for every x.
By the definition of DI, we also have

D(PXa||X−{a}
|| PXa

) = 0, ∀a ∈ A1 ∪ A2.

Combining equations B.1 implies

PX = PXA1

PXA2

n∏
t=1

PX−A1∪A2 ,t |Xt−1
1

On the other hand, again using chain rule, we have PX =
PXA1 ,A2

PX\(A1∪A2 )|A1,A2
. The equivalence between the two last equations and

the positivity assumption implies that XA1
and XA2

are independent.
Otherwise—the second case—let B1 and B2 be the set of all parents of A1

and A2, respectively. Since the system has a tree structure, then B1 ∩ B2 = ∅.
Similar to the previous case, one can obtain

D
(

PXA1
|XA2∪B1∪B2

||PXA1
||XB1

)
= 0.

Therefore, XA1
and XA2

are independent if XB1
and XB2

are independent. By
continuing the same procedure, we will end up with two disjoint subsets,
R1 and R2, of the root set R, such that Ri is the set of ancestors of Ai. Since
XR1

and XR2
are independent, XA1

and XA2
become independent.

Appendix C: Proof of Lemma 2

Suppose Yh is a hidden node in a minimal LDIT with no outgoing edges, and
let {X1, . . . , Xs} be its parents. Since Yh has no descendant, by marginalizing
over Yh, we obtain s disjoint subtrees. This is a contradiction with the
minimality assumption. Now suppose there exists a latent node, Y, in a
minimal LDIT with k parents XK := {X1, . . . , Xk} and one child X0. From the
definition of a generative model graph,

D(PX0|Y,XK
||PX0||Y) = 0,

D(PY|XK
||PY||XK

) = 0. (C.1)

By the chain rule,
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Figure 14: DIG in lemma 3. A ∪ {X} is the parent set of Y, and B ∪ {Y} is the
parent set of Z.

PXt
0,1|XK

=
∑
Yt−1

1

PXt
0,1|Yt−1

1 ,XK
PYt−1

1 |XK
. (C.2)

From equations C.1 and C.2, we have D(PX0|XK
||PX0||XK

) = 0.

Appendix D: Proof of Lemma 3

It suffices to prove the lemma for d = 2, as the case for larger d can be
proved by induction. Consider the case where d = 2 (X → Y → Z). Let
A = XPA(Y) \ {X} and B = XPA(Z) \ {Y} to be the set of parents of Y and Z
excluding X and Y, respectively, as shown in Figure 14. First, we show that

D(PZt |Zt−1
1 ,X||PZt |Zt−1

1 ,Xt−2
1

) = 0, ∀t ≤ n. (D.1)

Note that if equation D.1 holds, then by multiplying all terms for t =
1, . . . , n, we obtain

PZ|X =
n∏

t=1

PZt |Zt−1
1 ,Xt−2

1
,

which proves our claim. By the chain rule for any t, we have

PZt
1|X =∑Bt−1

1 Yt−1
1

PZt |Zt−1
1 ,Yt−1

1 ,Bt−1
1 ,XPZt−1

1 |Bt−1
1 ,Yt−1

1 ,X

PBt−1
1 |Yt−1

1 ,XPYt−1
1 |X. (D.2)

Theorem 1, lemma 1, and the definition of generative model imply the
following equalities:

PZ|Y,B,X,A = PZ||Y,B = PZ||Y,B,X,A,

PB|Y,X,A = PB = PB||X,A,Z,

PY|X,A = PY||X,A = PY||X,A,Z,B. (D.3)
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The above equalities imply

PZt |Zt−1
1 ,Yt−1

1 ,Bt−1
1 ,X = PZt |Zt−1

1 ,Yt−1
1 ,Bt−1

1 ,Xt−2
1

,

PZt−1
1 |Yt−1

1 ,Bt−1
1 ,X = PZt−1

1 |Yt−1
1 ,Bt−1

1 ,Xt−2
1

,

PBt−1
1 |Yt−1

1 ,X = PBt−1
1 |Yt−1

1 ,Xt−2
1

. (D.4)

Moreover, one can obtain the following equation using the chain rule,
lemma 5, and the equalities in equation D.3:

PYt−1
1 |X =

∑
At−2

1

PYt−1
1 |At−2

1 ,XPAt−2
1 |X

=
∑
At−2

1

PYt−1
1 |At−2

1 ,Xt−2
1

PAt−2
1 |Xt−2 = PYt−1

1 |Xt−2
1

. (D.5)

Substituting equations D.4 and D.5 into the right-hand side of equation D.2
proves our claim.

Appendix E: Proof of Lemma 4

It suffices to show

D(PY|W,X||PY||W) = 0. (E.1)

Suppose the length of the path from W to Y is d. We will prove equation E.1
by induction on d. For d = 1, define A := XPA(Y) \ {W}. In this case, similar
to the proof of lemma 3, the following equalities hold:

D(PY|A,W,X||PY||A,W) = 0,

D(PA|W,X||PA) = 0. (E.2)

From the chain rule,

PYt
1|W,X =

∑
A

PYt |Yt−1
1 ,A,W,XPYt−1

1 |A,W,XPA|W,X.

Then, by applying equation E.2 to the above equation, we obtain equa-
tion E.1.

Assume that equation E.1 holds for paths of length d < k. In order to
prove the case d = k, let Z be the parent of Y on the path from W to Y, and
B := XPA(Y) \ {Z}. The path from W to Z is of length k − 1, so by induction
hypothesis, we have
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D(PZ|W,X||PZ||W) = 0. (E.3)

Moreover, by the definition of the generative model graph and theorem 1,

D(PY|B,Z,W,X||PY||B,Z)= 0,

D(PB|Z,W,X||PB)= 0. (E.4)

The chain rule implies

PYt |W,X =
∑
B,Z

PYt |B,Z,W,XPB|Z,W,XPZ|W,X.

Applying equations E.3 and E.4 to the above equation proves the claim.

Appendix F: Proof of Lemma 5

Let R1 and R2 be two disjoint subsets of the root set R in a minimal LDIT.
Furthermore, assume R1 and R2 are root ancestors for nodes X and Y,
respectively. Denote all the nodes on the paths from R1 to X by A. It is
easy to check that if a node belongs to A, so do all of its parents. Therefore,
XPA(X) ⊆ A, where PA(X) is the parent set of X. Similarly, we denote all
the nodes on the paths from R2 to Y by B. By the definition of generative
model, we obtain

PX,Y,R1,R2,A,B = PR1
PR2

�A,R1
�B,R2

PX||PA(X)PY||PA(Y), (F.1)

where � and � represent the terms including the causal conditioned dis-
tributions of all processes on the paths from A1 to X, and from A2 to Y,
respectively. From the chain rule, we obtain

PX,Y,R1,R2,A,B = PR1,R2
PA|R1,R2

PB|A,R1,R2

PX|B,A,R1,R2
PY|X,B,A,R1,R2

. (F.2)

The equivalence between equations F.1 and F.2, and the positivity assump-
tion imply that X and Y are independent whenever PA(X) and PA(Y) are
independent. Continuing the same procedure, we can show that X and Y
are independent if R1 and R2 are independent.

Appendix G: Proof of Theorem 3

The proof consists of two parts. First, we show that if PAi is the parent set
of Xi in an MDIG, then
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D
(

PXi,t |Xt−1
i,1 ,Xt

−{i},1
|| PXi,t |Xt−1

i,1 ,Xt
PAi ,1

)
= 0. (G.1)

To do so, we use the definition of MDIG in section 4.2. Let R = −{i} \ PAi
be the set of all nodes except i and its parents. Since there is no arrow in
MDIG from R to Xi, we have

Ĩ(Xr → Xi||X−{i,r}) = 0, ∀r ∈ R.

The positivity assumption, together with the above equalities, imply

D
(

PXi,t |Xt−1
i,1 ,Xt

−{i},1
|| PXi,t |Xt−1

i,1 ,
⋂

r∈R Xt
−{i,r},1

)
= 0.

Noticing that
⋂

r∈R Xt
−{i,r},1 = Xt

PAi,1
, one can establish equation G.1. Next

we show that if there is an arrow from X j to Xi in an MDIG with polytree
structure (e.g., Ĩ(X j → Xi||X−{i, j}) > 0), then

D
(

PXi,t |Xt−1
i,1 ,Xt

−{i},1
|| PXi,t |Xt−1

i,1 ,Xt−1
j,1 ,Xt

−{i, j},1

)
= 0. (G.2)

In words, given the past of X j is enough for predicting the Xi,t . To prove
equation G.2, we use the fact that the graph is a polytree, and thus if there
is an arrow from X j to Xi, there will be no arrow in the opposite direction:

Ĩ(Xi → X j||X−{i, j}) = 0.

Consequently,

D
(

PXj,t |Xt−1
j,1 ,Xt

−{ j},1
|| PXj,t |Xt−1

j,1 ,Xt
−{i, j},1

)
= 0.

On the other hand, the chain rule implies

PXi,t |Xt−1
i,1 ,Xt

−{i},1
= PXj,t |Xt−1

j,1 ,Xt
−{ j},1

PXi,t |Xt−1
i,1 ,Xt−1

j,1 ,Xt
−{i, j},1

PXj,t |Xt−1
j,1 ,Xt−1

i,1 ,Xt
−{i, j},1

.

Combining the last two equations will imply equation G.2.

Appendix H: Proof of Theorem 4

First, we prove that �O suffices to learn
−→
T when R = {r}. The proof is by

induction on |O|. The base case, |O| = 1, is trivial, since by definition 8, L
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must be empty and
−→
T is the single node. Suppose a tree

−→
T = (V,

−→
E ) can be

recovered given any learnable subset L such that |O| ≤ k − 1. For the case
that |O| = k, let v ∈ O and Bv := arg minu∈O\{v} γr(v, u). Note that in a single

root tree, all the discrepancies must be nonnegative. We claim that
−→
T is a

star with a root in the center if and only if Bv = O \ {v} for all v ∈ O. If
−→
T is

a star, then clearly Bv = O \ {v} for all v ∈ O. The other direction is proved

by arguing that if
−→
T is not a star, then there exists a directed path of length

two, and because L is learnable, one can find a node on this path such that
Bv �= O \ {v}.

If there exists v ∈ O such that Bv �= O \ {v}, and minu∈O\{v} γr(v, u) = 0,
then all the nodes in Bv are the descendants of v. In this case by induction

hypothesis, the subtree of
−→
T containing v and all its descendants, is recov-

erable by Bv ∪ {v}, as well as the rest of the tree by O \ Bv . Similarly for the
case minu∈O\{v} γr(v, u) > 0.

We show that if |R| > 1, learning
−→
T can be done by learning |R| single

rooted trees, separately.
For v ∈ O, let Mv be a maximal subset of O containing v such that for

every u, w ∈ Mv , γ (u, w) ≥ 0. Clearly, if w belongs to Mv, so does all its
descendants, which are also in O.

Denote the minimal induced polytree of
−→
T containing Mv by

−→
T |M

v

=
(V ′,

−→
E

′
). Note that from the maximality of Mv, O ∩ V ′ ⊆ Mv . First, we show

that V ′ \ Mv is a learnable subset in
−→
T |M

v

; all nodes with out-degree at most

one in
−→
T |M

v

belong to Mv. All leaves in
−→
T |M

v

belong to Mv; otherwise, they

can be eliminated from
−→
T |M

v

, and it is a contradiction with the minimality

assumption on
−→
T |M

v

. Let u′ ∈ V ′ \ Mv be a node with out-degree one in
−→
T |M

v

. Since O ∩ V ′ ⊆ Mv , u′ ∈ L. If the out-degree of u′ is also one in
−→
T ,

then we have a contradiction with the learnability assumption of L. Hence,

there exists at least one descendant of u′ in O that does not belong to
−→
T |M

v

,
in which case we have a contradiction with the maximality of Mv.

Next, we claim that
−→
T |M

v

has only one root from the root set R. Suppose
−→
T |M

v

has more than one root. Since a tree has no cycles, there must exist
at least two nodes with degree one (either a root with degree one or a leaf)

with no common ancestor in
−→
T |M

v

, which contradicts the definition of Mv.
The final step is to prove that these single rooted subtrees can be merged

uniquely. This can be done by observing that if two single-rooted trees−→
T 1 = (V1,

−→
E 1) and

−→
T 2 = (V2,

−→
E 2) have an intersection in

−→
T , then that

intersection is also a single-rooted tree that can be learned from O ∩ V1 ∩ V2.
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Appendix I: Proof of Theorem 5

To show this we prove that the directed measure in equation 6.1 is a dis-
crepancy measure on T. First, it is important to note that by lemma 2, the
set of hidden nodes is a learnable subset in a minimal LDIT. The rest of the
proof verifies that directed measure in equation 6.1 satisfies the properties
of a discrepancy measure introduced in definition 7.

1. From definition 10, γ (X, X) = 0. Suppose X is an ancestor of Y. By the
sibling resemblance property, since X is the, common ancestor of X and Y
and I(X1; X) > 0, then I(X1; Y) > 0. In other words γ (X, Y) = 0.

2. This property is also a consequence of the sibling resemblance prop-
erty. Let W be the common ancestor of X and Y. If γ (X, W) = d, then by using
lemma 4, we obtain I(Xd

1 ; Y) = 0, which implies γ (X, Y) ≥ d. On the other
hand, since I(Xd+1

1 ; W) > 0 and I(Y; W) > 0, by sibling resemblance prop-
erty, we obtain I(Xd+1; Y|Xd

1 ) > 0, which implies γ (X, Y) = γ (X, W) = d.
3. This is shown by proving that for a given path X → Y → Z in a minimal

LDIT, if γ (Y, X) = l and γ (Z, Y) = d, then γ (Z, X) > max{l, d}.
First, we prove γ (Z, X) > d. It suffices to show

I(Zd+1; X|Zd
1) = 0. (I.1)

Using the chain rule, we obtain

PZd+1|Zd
1,X

=
∑
Y1

PZd+1|Zd
1,Y1,X

PZd
1 |Y1,X

PY1|X
PZd

1 |X
. (I.2)

Since γ (Z, Y) = d, Y is an ancestor of Z and by using the same argument as
in the proof of lemma 3, we obtain

D(PZd
1 |Y,X||PZd

1
) = 0 D(PY1|X||PY1

) = 0, (I.3)

D(PZd+1|Zd
1,Y1,X

||PZd+1|Zd
1,Y1

) = 0. (I.4)

Finally, the claim follows by substituting equations I.3 and I.4 into the
right-hand side of equation I.2. The statement γ (Z, X) > l may be proven
by showing I(Zl+1; X|Zl

1) = 0,

PZl+1|Zl
1,X

=
∑
Yl

1

PZl+1|Zl
1,Y

l
1,X

PZl
1|Yl

1,X

PYl
1|X∑

Y ′l−1
1

PZl
1|Y ′l−1

1 ,XPY ′l−1
1 |X

,

since γ (Y, X) = l, and using the same argument as above, one can prove
the claim.

4. This property is a direct consequence of lemma 5 and definition 10.
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Appendix J: Proof of Lemma 6

First we prove the following lemma which will be used in the proof of
lemma 6.

Lemma 7. Let 1 ≤ a/x and x ≥ 0. For any 0 < λ < 1, x log a
x is bounded from

above by aλx1−λ

λ
.

Proof. Since 1 ≤ a/x, then log
( a

x

)λ ≤ ( a
x

)λ, for any 0 < λ < 1. Hence,
λx log a

x ≤ aλx1−λ.

Proof of Lemma 6. Using McDiarmid’s inequality (McDiarmid, 1989) and
the union bound for the empirical estimator, equation 7.1, we obtain

P

(
max

(x1,x2 )∈|X|d1+d2

|PX1,X2
(x1, x2) − P̂X1,X2

(x1, x2)| ≥ δ

)

≤ 2|X |d1+d2 e−2Nδ2 ≤ 2|X |2ne−2Nδ2
. (J.1)

For simplicity, denote (X1, X2) by Z. From ||PZ − P̂Z||1 ≤
|X |2n maxZ |PZ(Z) − P̂Z(Z)| and equation J.1, we obtain

P
(||PZ − P̂Z||1 ≥ |X |2nδ

) ≤ 2|X |2ne−2Nδ2
. (J.2)

Using an �1-norm bound on entropy (Cover & Thomas, 2012), if ||PZ −
P̂Z||1 < 0.5, then

|H(Z) − Ĥ(Z)| ≤ ||PZ − P̂Z||1 log
|X |d1+d2

||PZ − P̂Z||1
.

Applying lemma 7, we have

|H(Z) − Ĥ(Z)| ≤ 1
λ

||PZ − P̂Z||1−λ
1 |X |λ(d1+d2 ). (J.3)

Therefore,

P
(|H(Z) − Ĥ(Z)| ≥ ε

) ≤ P

(
||PZ − P̂Z||1−λ

1 ≥ λε

|X |λ(d1+d2 )

)
.

From equation J.2, we have

P
(|H(Z) − Ĥ(Z)| ≥ ε

) ≤ 2|X |2n exp

(
−2N

(
λε

|X |2n

) 2
1−λ

)
. (J.4)
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Using the definition of mutual information,

I(X1; X2) = H(X1) + H(X2) − H(X1, X2),

we obtain

P
(|I(X1; X2) − Î(X1; X2)| ≥ ε

) ≤ P
(|H(X1) − Ĥ(X1)| ≥ ε/3

)+
P
(|H(X2) − Ĥ(X2)| ≥ ε/3

)+ P
(|H(X1, X2) − Ĥ(X1, X2)| ≥ ε/3

)
.

Applying the upper bound in equation J.4 to the above inequality will
conclude the lemma. It remains only to choose λ to minimize the right-
hand side of equation J.4. We choose λ = 1/ log(

3|X |2n

ε
).
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