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Abstract

Gastrointestinal (GI) problems give rise to 10 percent of initial patient visits to their physician.

Although blockages and infections are easy to diagnose, more than half of GI disorders

involve abnormal functioning of the GI tract, where diagnosis entails subjective symptom-

based questionnaires or objective but invasive, intermittent procedures in specialized cen-

ters. Although common procedures capture motor aspects of gastric function, which do

not correlate with symptoms or treatment response, recent findings with invasive electrical

recordings show that spatiotemporal patterns of the gastric slow wave are associated with

diagnosis, symptoms, and treatment response. We here consider developing non-invasive

approaches to extract this information. Using CT scans from human subjects, we simulate

normative and disordered gastric surface electrical activity along with associated abdominal

activity. We employ Bayesian inference to solve the ill-posed inverse problem of estimating

gastric surface activity from cutaneous recordings. We utilize a prior distribution on the spa-

tiotemporal activity pertaining to sparsity in the number of wavefronts on the stomach sur-

face, and smooth evolution of these wavefronts across time. We implement an efficient

procedure to construct the Bayes optimal estimate and demonstrate its superiority com-

pared to other commonly used inverse methods, for both normal and disordered gastric

activity. Region-specific wave direction information is calculated and consistent with the sim-

ulated normative and disordered cases. We apply these methods to cutaneous multi-elec-

trode recordings of two human subjects with the same clinical description of motor function,

but different diagnosis of underlying cause. Our method finds statistically significant wave

propagation in all stomach regions for both subjects, anterograde activity throughout for the

subject with diabetic gastroparesis, and retrograde activity in some regions for the subject

with idiopathic gastroparesis. These findings provide a further step towards towards non-

invasive phenotyping of gastric function and indicate the long-term potential for enabling

population health opportunities with objective GI assessment.
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Introduction

Gastrointestinal (GI) problems are the second leading cause for missing work or school in the

US [1], giving rise to 10% of the reasons a patient visits their physician, and costing $142 bil-

lion annually [2]. Symptom management is routinely used by primary care physicians, and

patients are referred to GI specialists if symptoms persist, which happens most of the time [2].

While pathologic findings can be detected with a blood test, endoscopy, or imaging, oftentimes

symptoms cannot be attributed to a medical condition despite appropriate workup. These

disorders fall under the umbrella of functional and motility GI disorders such as Functional

dyspepsia and gastroparesis (which affects Parkinson’s and diabetes patients [3, 4]). These dis-

orders make up a majority of patient referrals to GI specialists.

The clinical gold standard for diagnosing motility disorders is gastric emptying, which typi-

cally involves imaging after ingestion of a meal containing radioactive tracer. However, gastric

emptying does not correlate with symptoms [5] and is not associated with symptom improve-

ment [6]: some drugs improve symptoms but not gastric emptying and vice versa [7–9]. In

fact, the NIH Gastroparesis Consortium has recently recommended that improvement in gas-

tric emptying not be considered a requirement for clinical drug trials in gastroparesis [5].

The GI system contains smooth muscle cells (SMCs) that are controlled by rhythmically

oscillating slow waves, whose spatiotemporal coordination enables peristalsis to propel food

through the GI tract [10, 11]. It has been observed during surgery with invasive high-resolu-

tion electrical mapping of the stomach surface that direction and speed patterns of the gastric

slow wave co-varies with functional GI disorders, such as gastroparesis, chronic nausea and

vomiting, and functional dyspepsia [12, 13]. In a normal functioning stomach, the slow wave

is characterized by bands of electric-motor activity which initiate in the pacemaker region

(near the fundus) and propagate in equipotential rings in the anterograde direction towards

the pylorus [11]. It has also been shown that in patients with GI disorder diagnoses, abnormal

initiation can occur, where the bands of activity initiate outside the pacemaker region and

bifurcate into a retrograde propagating wave and anterograde propagating wave.

Moreover, recent findings show that features of mucosal multi-electrode recordings predict

symptom improvement from gastric stimulation [14–16]. This suggests that new opportunities

may emerge to phenotype, localize, and treat such disorders, if such information could be

extracted non-invasively.

Conventional electrogastrography (EGG), a noninvasive technique for recording the gastric

myoelectric activity using electrodes placed cutaneously on the abdominal surface overlying

the stomach [17], is attractive in its non-invasiveness and simplicity in interpretation of a

single waveform with spectral analysis. However, conventional EGG solely extracts spectral

information [18] and it has been shown that spatial abnormalities can occur at normal fre-

quencies and thus go undetected by conventional EGG [19]. This inability to capture spatial

abnormalities that co-vary with functional GI disorders, as well as its inability to correlate with

symptoms, might explain why conventional EGG is seldom used clinically [20]. Our recent

advances with the high-resolution electrogastrogram (HR-EGG) [21], acquired non-invasively

from cutaneous multi-electrode arrays, allows for extraction of abdominal wave propagation

parameters at every time point (e.g. presence of a wave, propagation direction and speed). We

have recently demonstrated that these features correlate with symptom severity in a population

of GI patients spanning a wide range of BMI and ages [22]. This is significant, given the lack of

association between symptom severity and gastric emptying. The HR-EGG, however, extracts

spatial information relative to the cutaneous surface of the abdomen. From volume conduc-

tion, the voltages from cutaneous recordings are the results of an average of complex electrical

sources from the gastric surface. Moreover, it was shown [12, 13, 23] that retrograde and
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anterograde waves from one or more sources can arise at the same time in the distal stomach,

suggesting that cutaneous spatial analyses will not be able to resolve them. As such, it has yet to

be determined if one can develop a fully non-invasive and simple signal acquisition procedure

to reliably extract dynamic spatial patterns of gastric surface electrical activity.

In order to address the problem of non-invasively localizing the site of spatial abnormalities

on the gastric surface, we here consider developing inverse methods to infer spatiotemporal

electrical patterns on the stomach surface based upon multi-electrode abdominal recordings.

Ideally this problem could be solved with a standard linear least squares method if the number

electrodes in the observation array exceeds the number of unknowns we aim to infer. For

instance, if a linear model relating the unknowns x to the observation array y is governed by a

matrix A, then it is well-known that the least squares fit x̂ðtÞ is given by:

x̂ðtÞ ¼ ðATAÞ� 1ATyðtÞ: ð1Þ

However, Eq (1) can only be implemented when A is full rank. When it is not, e.g. when the

number of unknown variables exceeds the number of observations, the problem is considered

ill-posed and there are infinitely many candidate solutions which are equally consistent with

the data. One way to address this issue is to use Bayesian inference, in which a prior distribu-

tion is specified that enforces a unique solution to a regularized model-fitting problem.

Using computed tomography (CT) scans from human subjects, we simulate gastric surface

electrical activity of stomachs for normative (with proximal wave generation and anterograde

propagation) and disordered (with distal wave generation and retrograde and anterograde

propagation) cases (see Figs 1 and 2). With a forward model to relate the gastric surface

potentials to the abdominal surface potentials, we generate a simulated abdominal surface

observation array positioned according to the same CT scan. To simplify the computational

complexity of the problem, we exploit how circumferential bands of equal potential travel in

the organoaxial direction [11] to construct a set of spatial basis functions defined on these

annular rings of the gastric surface. These different basis functions represent different numbers

of wavefronts per unit space. Thus, estimation of the gastric surface spatiotemporal electric

activity is now in terms of estimating the time series of weight vectors.

Even with the simplification of the problem to a set of spatial basis functions, the estimation

problem remains ill-posed. As such, we take a Bayesian inference perspective and develop dif-

ferent prior distributions on the time series of weight vectors, each of which pertains to an esti-

mation problem for finding the Bayes optimal point estimate, also termed the Maximum a

Posteriori (MAP) estimate. We consider three widely used prior distributions on the time

series of weights: Tikhonov regularization, ℓ1 regularization (which encourages sparsity in the

number of active spatial wavefronts and can be solved with the LASSO), and a linear Gaussian

state space model (which encourages temporal smoothness and can be solved with the Kalman

smoother). In addition, we consider a recently developed [24] group sparsity prior which

encourages both sparsity in active spatial wavefronts and temporal smoothness. Further, we

implement a recently-developed computationally efficient procedure to construct the MAP

estimate [25] associated with this group sparsity prior.

We demonstrate that the estimation algorithm pertaining to group sparsity has superior

performance in comparison to all other methods, across a range of noise conditions, for both

normative and disordered gastric activity. Region-specific wave direction information is calcu-

lated and consistent with normal (anterograde propagation in all regions) and abnormal

(anterograde propagation on one side of wave origination and retrograde propagation on the

other) cases. We apply these methods to cutaneous multi-electrode recordings of two human

subjects who have the same clinical description of motor function, but different underlying
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Fig 1. Process workflow. A) Using the 3 standard CT views, a 3D model of the stomach is extracted. B) We develop a

spatially inhomogeneous solution to the 1D wave equation, pertaining to propagation down the organoaxial direction

of the stomach, with region-specific amplitudes and speeds based upon recent findings in the literature from invasive

human recordings. C) The 1D wave equation solution is mapped to the 3D model to generate the dynamic dipole

moment solution. D) We solve a forward model to generate the dynamic simulated observations and inject additive

measurement noise.

https://doi.org/10.1371/journal.pone.0220315.g001

Fig 2. Abnormal and normal simulation propagation directions. A) 3D physiology mapped normal simulation. The

wave initiates in the proximal stomach and has only anterograde propagation. B) 3D physiology mapped abnormal

simulation. The wave initiates in the distal stomach and has both retrograde and anterograde propagation. C) The

different proximal and distal regions of the stomach.

https://doi.org/10.1371/journal.pone.0220315.g002
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diagnosed causes (diabetic gastroparesis in subject 1 and idiopathic gastroparesis in subject 2).

We find statistically significant wave propagation in all regions for both subjects, anterograde

activity in all stomach regions for subject 1, and retrograde activity in some stomach regions

for subject 2.

Previous work

Much of the previous work on solving the inverse problem to infer the gastric slow wave from

cutaneous recordings is based on the magnetogastrogram (MGG) [26, 27] which measures the

magnetic fields produced by the gastric electric currents. Although the MGG shows promise

in its ability distinguish between normative and disordered gastric activity [27], it requires

measuring the magnetic field with large environmentally controlled equipment [28, 29]. The

HR-EGG signals, in comparison, do not require such shielding and have the potential to be

deployed in ambulatory settings. [30].

One previous implementation of an inverse approach to gastric slow wave localization based

on simulated abdominal surface electrical measurements utilized a highly detailed but generic

ionic channel biophysical model using a generic torso model [31]. This previous approach lev-

eraged classic linear regression (Tihkonov and Tikhonov-greensite) techniques that have been

used in the EEG and ECG localization literature [31]. These regression methods attempt to

combat the under-determinedness of the problem through the use of regularization either solely

in the spatial domain with Tikhonov regression (as in [31, eqn 2]) or through the use of spatio-

temporal regularization with Tikhonov-Greensite regularization (as in [31], eqn 3) which uses a

spatiotemporal basis [32] to accommodate spatiotemporal continuity in the solution.

Materials and methods

Key to this study was the development of a three dimensional (3D) time evolving electrical

model from which we could generate dynamic simulations. To accomplish this, we first

extracted the 3D model of both the stomach and the abdominal surface from a human subject

CT. We then developed models of normal and abnormal gastric slow wave electrical activity

using a solution to a one-dimensional (1D) wave equation. To map this solution to the 3D

stomach model, we sliced it along planes normal to a curve along the stomach which we term

the organoaxial curve (see Fig 1). To map the dynamic 3D model of the stomach to the abdom-

inal surface, we solve a standard forward model which assumes that the medium between the

stomach surface and abdominal surface is homogeneous with fixed conductivity. The output

of this is the simulated abdominal observation array of electric potentials into which we inject

additive white Gaussian noise (AWGN) and then apply the aforementioned Bayesian inference

techniques to solve the ill-conditioned inverse problem.

Simulation development

3D physiology. Using 3D Slicer, an open source medical imaging tool [33], we extract an

anatomical 3D model of the stomach and abdomen. We placed fiducial points on the abdomen

to estimate electrode positions and fiducial lines were drawn on the stomach model surface

using a secondary tool (Meshlab) [34]. To simulate the averaging effect of the electrodes,

the forward model was solved at several points around the fiducial electrode marker on the

abdominal model and averaged together to generate the observation data Y 2 RN�T
where N is

the number of electrodes and T is the number of time samples. For this simulation N is 100 (a

10x10 grid of electrodes) and T is 300 time samples at a sampling rate of 5 samples/second. To

map the dynamic simulation of the gastric slow wave to the 3D model of the stomach, three

equi-spaced fiducial lines consisting of 120 spatial points were drawn along the surface of the
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stomach model (see Fig 2 for an example of one of the fiducial lines). From these lines, we

derived a series of planes normal to the stomach, and created grouped rings of spatial points.

The center-line of the planes forms the organoaxial curve. Onto each one of these rings, we

mapped a value of the 1D wave equation solution as a function of time sample. This represents

the activation of the normative stomach in equi-potential rings.

1-D wave equation. The gastric slow wave, like the heart, begins with the activation of

a group of pacemaker cells on the greater curvature of the stomach [35]. The signal emitted

spreads isotropically from the pacemaker region via activation of the interstitial cells of Cajal

(ICC), which initiate muscle contractions through the corpus and antrum. Typically, less than

5 simultaneous slow wave wavefronts occur at any time in the human stomach [35].

Due to the continuous nature of the gastric slow wave, and the clear wave-like propagation,

we simulated a signal model based on the wave equation. In the normal simulation, wave activ-

ity begins in the proximal stomach and the wave direction is entirely anterograde (traveling

from the proximal toward the distal stomach). As has been done with other gastric models

of the slow wave [21], we ignored circumferential propagation of the serosal slow-wave and

solved the following 1D wave equation using a finite difference approach:

@
2u
@t2
¼ cðxÞ2

@
2u
@x2

ð2Þ

where c(x) is the stomach surface location dependent wave speed, and u(x, t), the 1D wave

equation solution, is the amplitude of the wave at each location x and time t. Gaussian pulses

with a width of 35 mm were generated every 20 seconds (0.05 Hz) in the first proximal region

of the stomach. The pulse width, in addition to the modulations of its speed and amplitude

along the organoaxial direction of the stomach, were chosen to be consistent with the most

recent description in the literature for healthy subjects [35–37]. Both the speed and amplitude

were highest in the first proximal region (6.0 mm/s, 0.57 mV), followed by a reduction in the

second proximal and first distal regions (3.0 mm/s, 0.25 mV), and finally increased in the sec-

ond distal region (5.9 mm/s, 0.52 mV). See Fig 2 for a description of regions. Mur’s boundary

condition was used to ensure the pulses were absorbed into the pylorus rather than being

reflected back into the stomach. The Courant-Friedrichs-Lewy condition dictated the temporal

step-size to guarantee a converged finite-difference solution.

This same approach is used to develop a dynamic simulation for abnormal initiation. For

this part of the simulation, we kept the pulse width as well as speed and amplitude of the wave

constant, but modified the initial conditions so that wave patterns were consistent with the

findings in invasive recordings [12]: a wave was initiated in the distal stomach and bifurcated

into two waves, one propagating anterograde at more distal locations and the other retrograde

at more proximal locations. Fig 2 describes the differences between the normal and abnormal

initiation simulations.

Forward model. The 3D stomach model is sliced into annular rings and the 1D wave

equation is mapped onto the geometry to represent rings of equipotentials (Fig 3). This solu-

tion provides current dipole moments at each point in time, and each dipole is oriented along

the organoaxial direction of the stomach [38], as seen in Fig 4A. We compute the estimated

EGG signal at each electrode [39] as:

ynðtÞ ¼
XD

i¼1

An;ixiðtÞ þ NnðtÞ ð3Þ

where yn(t) is the signal received at each of the N electrodes, An,i is the solution to the forward

model at each of the D sources on the stomach surface, and xi(t) is the dipole moment at each

Bayesian inverse methods for characterizing gastric electrical activity from multi-electrode skin recordings
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source location and each instant in time. Nn(t) is additive white Gaussian noise (AWGN) of

adjustable variance σ2, giving rise to adjustable signal-to-noise ratio (SNR) in simulations, in

accordance with previous EEG simulation and inverse modeling methods [39].

For the purposes of this analysis, the body is modeled as a homogeneous medium which

contains the stomach surface. The solution to the forward model reduces to an attenuation

constant which depends on the positions of the source (stomach) and the sensor (abdomen).

In matrix notation, the simulated observations are generated as~yðtÞ ¼ A~xðtÞ þ ~NðtÞ, and the

solution for the matrix is:

An;i ¼
cos y

4psr2
n;i

ð4Þ

Fig 3. Visualization of source activity mapped to the 3D stomach model. A) 3D stomach model with the normal dynamic simulation mapped at the 6 second

time point. The two dimensional time/space plot is shown below the 3D model. B) 3D stomach model with the abnormal dynamic simulation mapped at the 6

second time point. The two dimensional time/space plot is shown below the 3D model.

https://doi.org/10.1371/journal.pone.0220315.g003
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where θ is the angle between the current dipole (oriented organoaxially) and the observation

point on the abdominal surface, σ is the tissue conductivity (a constant due to the homoge-

neous medium), and r the straight line distance between the current dipole and the abdominal

observation [38].

Inverse solutions

Although the problem is ill-posed, we aim to take advantage of the fact that the electrical activ-

ity of the stomach has key physiologic mechanisms that commonly occur both in normal and

diseased states. Specifically, (1) there is a small number of electrically active bands along the

surface of the stomach, and further (2) they move continuously over time. We aim to take

advantage of this prior physiologic knowledge to utilize Bayesian inference techniques to find

an estimate of the gastric electrical activity over time. Since the electrically active bands propa-

gate as waves along the gastric surface, we represent the stomach electrical activity at any point

in time as a weighted combination of different spatial basis functions, each of which represents

the numbers of wavefronts per unit space. As such, the estimation of electrical activity of the

stomach over time, boils down to estimation of the vector of weights over time. We consider

different models (prior distributions) of the weights over time which encode different subsets

of the two aforementioned physiologic underpinnings of gastric electrical activity. As a base-

line, we consider using Tikhonov regularization, the most common form of regularization in

inverse problems, which neither encodes physiologic mechanism (1) nor continuous activity

over time (2). To solely address (1), the small number of electrically active bands on the stom-

ach surface, we use an L1 regularizer, which promotes sparsity in the number of active weights,

and can be solved with the least absolute shrinkage (LASSO) estimation algorithm. To solely

address (2), the smooth evolution of the waves, we use a Gaussian state space model, which

promotes smoothness overtime and can be solved with the Kalman smoother. To address (1)

and (2) in the same estimation method, we consider using a group sparsity model. Further,

we use a computationally efficient procedure to solve the MAP estimation problem for this

model.

Basis functions. For the problem of estimating the stomach surface potentials, we take

into consideration how the gastric slow wave contains bands of electrical activity that propa-

gate as rings continuously along the gastric surface [11]. We thus represent the spatiotemporal

activity on the gastric surface as a weighted combination of basis functions over space,

where the functions are invariant with time but the weights are indexed by time. Under our

Fig 4. Dynamic dipole moment simulations and forward model. A) Forward model relationship between dynamic dipole

moments (X) and observed abdominal surface potentials (Y) B) 3D models of dynamic dipole moments and observed array C)

Time evolution of dipole moments and observations for normal simulation.

https://doi.org/10.1371/journal.pone.0220315.g004

Bayesian inverse methods for characterizing gastric electrical activity from multi-electrode skin recordings

PLOS ONE | https://doi.org/10.1371/journal.pone.0220315 October 14, 2019 8 / 26

https://doi.org/10.1371/journal.pone.0220315.g004
https://doi.org/10.1371/journal.pone.0220315


assumption that the gastric slow wave travels along the organoaxial curve in rings of equi-

potential, the bases are solely functions of the position along the one-dimensional organoaxial

curve. This curve is visualized in Fig 2 as the points along the top of the geometry.

To construct the set of basis functions, we considered a spatial Fourier basis in which the

different sinusoids represent different spatial frequencies, or number of wavefronts that exist

per unit space:

ðHÞk;i ¼ cos pi
k
K

� �

ð5Þ

ðHÞkþK
2
;i ¼ sin pi

k
K

� �

ð6Þ

where i = 0, . . ., D − 1 represents the spatial index along the organoaxial curve, and k/K for

k = 1, . . ., K/2 the relative spatial frequency component.

As such, we solve the problem with respect to basis functions of a line of sources and map

the inverse result to the full ring of sources.

~xðtÞ ¼ HT~wðtÞ ð7Þ

where HT is the basis matrix (D × K) and wk(t) are the K time evolving weights. This reduces

the problem to finding an optimum set of weights which are less than the total number of

sources. Eq (3) becomes

ynðtÞ ¼
XD

i¼1

An;i

XK

k¼1

hd;kwkðtÞ þ NnðtÞ ð8Þ

where hd,k is the index into the basis matrix and wk(t) is the kth weight. Eq (7) simplifies in

matrix notation to:

~yðtÞ ¼ AHT~wðtÞ þ ~NðtÞ: ð9Þ

MAP estimation for source localization

With the measurement model with respect to the basis representation given by Eq (8), which

encodes the statistical model p(Y|W), we formulate the localization problem as one of finding

the Bayes optimal point estimate of the time series of weights, which maximizes p(W|Y) over

W for any set of measurements Y. This MAP estimation approach takes into consideration the

measurement model p(Y|W) along with the prior distribution p(W) to identify a solution to

our ill-posed problem. The general form of the MAP estimation procedure is as follows:

ŴMAP ¼ arg max
W2RK�T

pðWjYÞ ð10Þ

where p(W|Y) is the posterior probability of a set of weights W given a set of observations Y.

Using Bayes’ rule

pðWjYÞ ¼
pðWÞpðYjWÞ

pðYÞ
: ð11Þ

Since p(Y) is not a function of W, and since the −log function is monotonically decreasing, the
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maximizer in Eq (10) is equivalent to the minimizer of Eq (12):

ŴMAP ¼ arg min
W2RK�T

� log pðYjWÞ � log pðWÞ: ð12Þ

Since the likelihoood p(Y|W) is governed by the forward model and additive Gaussian noise

model at the electrodes, from Eq (3), we have that the estimator in Eq (12) becomes:

ŴMAP ¼ arg min
W2RK�T

XT� 1

t¼0

jj~yðtÞ � AHT~wðtÞjj2
2
þ lpenðWÞ ð13Þ

where −log p(W) is proportional to the penalty term pen(W). In each inverse method

described, it is this penalty term which will change to support the underlying model

assumptions.

Our source estimate for any time t is then:

~̂x ðtÞ ¼ HT~̂wMAPðtÞ ð14Þ

We evaluate four different priors (pen(W)) over the weights, which encode different assump-

tions about smoothness and sparsity. First, we consider Tikhonov regularization, a classic pen-

alty which was used in previous work [31] and is extensively used in EEG and EKG inverse

analysis [40] but does not enforce smoothness or sparseness in the solution. Second, we con-

sider pen(W) to be a sum of ℓ1 penalties over ~wðtÞ so that Eq (13) becomes a LASSO problem

[41], which encourages sparsity in the solution. Third, we consider pen(W) to encode a linear

Gaussian state space model so that the solution to Eq (13) becomes a Kalman smoother, which

has been applied to the problem of EEG source localization [42] and emphasizes smoothness

(i.e. the solution at time t1 is dependent on the solution at time t0) in the model. Finally we

consider a group sparsity prior, recently developed in [24] for robust spectrotemporal decom-

position of time series, for which an efficient and modular solution of Eq (13) with respect to

this prior was recently developed in [25]. This group sparsity prior encourages spatial sparsity

in the active wavefronts, akin to the LASSO, and encourages temporal smoothness, akin to the

Kalman smoother. Each of these methods require finding one or more penalty coefficients λ.

Because we generate the ground truth simulation, we find the optimum λ by minimizing the

error between the solution found and the simulated data.

Tikhonov/Ridge regression. Tikhonov ridge regression makes no assumptions about

smoothness or sparsity but is a classic method for solving ill-conditioned problems, by impos-

ing an ℓ2-norm penalty on W:

penðWÞ ¼
XT� 1

t¼0

jjG~wðtÞjj2
2

ð15Þ

for some square matrix Γ. Unlike the other methods, Tikhonov regression has a closed form

solution:

~wridgeðtÞ ¼ ððAHÞ
TAH þ lGTGÞ

� 1
ðAHÞTYðtÞ ð16Þ

Tikhonov regression has been applied to this problem with some success in previous work

on gastric electrical source localization [31, 43], hence it is included here with Γ = I for

completeness.

The LASSO. The LASSO is similar in formulation to Tikhonov regression except that is

uses an ℓ1-norm instead of an ℓ2-norm. As a result, the LASSO encourages 0-valued weights
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which enforces sparsity in the solution:

penðWÞ ¼
XT� 1

t¼0

jj~wðtÞjj1 ð17Þ

For this study we use the python Sci-kit Learn implementation of the LASSO [44].

The Kalman smoother. The linear Gaussian state space model of the form

~wðt þ 1Þ ¼ ~wðtÞ þ ~mðtÞ

where each ~mðtÞ is a multivariate Gaussian with zero mean and covariance matrix S. This

gives rise to the Kalman smoother as the MAP solution, which enforces smoothness in time.

For S = I, the penalty is as follows:

penðWÞ ¼ jj~wð0Þjj2
2
þ
XT� 1

t¼1

jj~wðtÞ � ~wðt � 1Þjj
2

2
ð18Þ

For implementation of the Kalman smoother we used the python pykalman package [45].

Group sparsity. We here consider a group sparsity regularization technique that pro-

motes sparsity among groups of coefficients [46] (in our case, weights on the spatial basis func-

tions). For this problem, we establish groups of coefficients over time and impose the penalty

on the first differences of the coefficients [47], which imposes temporal smoothness on evolu-

tion of the coefficients. As a result, only a sparse subset of the coefficients are non-zero at any

given time, and those that are non-zero evolve smoothly over time. Formally, the penalty asso-

ciated with Eq (13) is given by:

penðWÞ ¼
XK� 1

k¼0

XT� 1

t¼0

dkðtÞ
2

 !1
2

ð19Þ

where d represents the first differences (in time) of w:

~dð0Þ ¼ ~wð0Þ ð20aÞ

~dðtÞ ¼ ~wðtÞ � ~wðt � 1Þ; t ¼ 1; . . . ;T � 1: ð20bÞ

The group LASSO can alternatively be viewed as the composition of ℓ1 and ℓ2-norms. To

see this, first note that:

XT� 1

t¼0

dkðtÞ
2

 !1
2

¼ jj~dkjj2 ð21Þ

where~dk ≜ ½dkð0Þ; . . . ; dkðT � 1Þ� is a vector representing the first differences of the coeffi-

cients associated with the kth basis function. Note the similarity in Eq (20b) combined with Eq

(21) to the Kalman smoother penalty in Eq (18), involving an ℓ2 norm operating on temporal

differences of the weight vectors. Using the representation in Eq (21), we can rewrite Eq (19)

as:

penðWÞ ¼
XK� 1

k¼0

jj~dkjj2 ¼ jj~vjj1 ð22Þ
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where~v ≜ ½jj~d0jj2; . . . ; jj~dK� 1jj2�. Succinctly, the penalty is an ℓ1-norm of an ℓ2-norm of time

differences.

Under this interpretation, the ℓ1 norm will allow for only a small number of non-zero ele-

ments in~v. Furthermore, vk = 0 implies that dk(t) = 0 for all t, which by virtue of Eq (20), fur-

ther implies that wk(t) = 0 for all t. Considering only the k for which vk> 0, we can consider

the effect of the ℓ2 norm in Eq (21) for which, in analogy with the Kalman smoother, the

non-zero weights ~wk will evolve smoothly over time. As a result, we can expect the estimated

sources X̂ to be composed of a small number of spatial frequency components evolving contin-

uously in time.

We solve the proposed group LASSO problem using a consensus formulation of the alter-

nating directions method of multipliers (ADMM) [48]. A generalized solution framework

for using ADMM to estimate latent time-series using sparse regularization is presented in

[25].

Calculation of wave propagation parameters

We extracted estimates of the gastric surface potentials using the MAP estimation procedure

in Eq (13) with the group sparsity prior pertaining to Eq (19). With these gastric surface poten-

tials along the organo-axial curve, we identified region-specific wave propagation features of

the gastric slow wave. Specifically, we extracted directional information from the phases of the

estimated electrical activity on the gastric surface. To determine when the directional informa-

tion was statistically significant, we utilized a technique called the phase gradient directionality

(PGD), which was originally developed in physics and neuroscience communities [49] and

was recently employed to describe spatial patterns of GI activity with cutaneous multi-elec-

trode recordings [21].

We extracted wave propagation features of the slow wave from the estimated patterns along

the organoaxial curve by first performing the Hilbert transform on each individual estimated

source on the curve ðx̂iðtÞ : i ¼ 1; . . . ;D; t ¼ 1; . . . ;TÞ in the array to extract instantaneous

amplitude and phase information:

x̂iðtÞ þ jHb½x̂iðtÞ� ¼ aiðtÞej�iðtÞ; i ¼ 1; . . . ;D; t ¼ 1; . . . ;T: ð23Þ

where j is defined to be
ffiffiffiffiffiffiffi
� 1
p

, Hb is the Hilbert transform, ϕi(t) is the instantaneous phase of

the ith source on the organoaxial curve, and ai(t) is the instantaneous amplitude of source i.
We represented instantaneous phase information as a function of η 2 [0, 1] which parame-

terizes the organoaxial curve. Discretizing this into D points, we have:

�ðZi; tÞ � �iðtÞ; i ¼ 1; . . . ;D:

The spatial gradient of instantaneous phase,rηϕ(η, t), was constructed at each point ηi
along the organoaxial curve. Since the wave velocity vector v is normal to contours of constant

phase, it satisfies

vðZ; tÞ / � rZ�ðZ; tÞ: ð24Þ

We found the direction of source i at position ηi on the organoaxial curve, at time t, as

LiðtÞ ¼ signð� rZ�ðZ; tÞÞ; i ¼ 1; . . . ;D; t ¼ 1; . . . ;T: ð25Þ

In order to determine if a consistent wave is propagating in a sub-region of the stomach

R � f1; . . . ;Dg, we calculate the PGD in that region, which is the ratio of the norm of

the spatially averaged electrode velocities with the spatial average of the norm of electrode

Bayesian inverse methods for characterizing gastric electrical activity from multi-electrode skin recordings

PLOS ONE | https://doi.org/10.1371/journal.pone.0220315 October 14, 2019 12 / 26

https://doi.org/10.1371/journal.pone.0220315


velocities:

PGDRðtÞ ¼
k 1

jRj

P
i2RrZ�ðZi; tÞk

1

jRj

P
i2RkrZ�ðZi; tÞk

; t ¼ 1; . . . ;T ð26Þ

where jRj indicates the number of elements in the set R and velocities are replaced with −rϕ
by virtue of Eq (24). The PGD is a measure of how aligned the wave velocities at different posi-

tions are at any point in time, lies between 0 and 1, and equals 1 for planar waves [49]. Thus

one interpretation of the PGD is as a measure of how “close” the activity is to being a plane

wave, which is akin to what occurs for a normal slow-wave HR-EGG recordings, exhibiting

predominantly anterograde propagation.

In order to control the false discovery rate associated with PGD, we defined statistically sig-

nificant planar wave propagation to be present when PGDRðtÞ > 0:5 for 1 second or longer

(see [21, Fig 2]). A beneficial side effect of computing the PGD is the computation of the

wave velocities, from which we can identify anterograde or retrograde propagation at the time

points for which the PGD is > 0.5 (i.e. a wave is present). The PGD results for the simulated

data are compared in Table 1.

Human data processing

In simulated data, we can fully characterize the performance of our estimation procedures

because the ground truth is known. We here considered applying the group sparsity estimation

procedure, e.g. solving Eq (13) with the penalty given by (19), on data collected from two

human subjects. Specifically, we collected cutaneous 100-channel EGG recordings on two

human subjects for whom CTs were available. Both subjects provided written consent to par-

ticipate in the study and was part of an ongoing study at the University of California, San

Diego, whose institutional review board provided ethical approval (IRB number 141069 “A

pilot trial to evaluate the utility of passive, skin-mounted electrodes to monitor the electrical

activity of the human digestive system.”). We used a 10 × 10 electrode array with a reference

electrode outside of the recording grid. The amplifier was a 256 channel GTec g.HIamp sys-

tem, sampled at 256 Hz and then down-sampled to 4 Hz. We recorded 90 minutes of EGG

data, 30 minutes into which the patient ate a small meal. Prior to analysis, we filtered the data

with a band-pass filter with pass band frequencies between 0.015 Hz and 0.25 Hz. We show-

case detailed results from one human subject whose CT was used for the aforementioned sim-

ulations. We compare summary findings of the human recorded data from both subjects in

Table 2. The detailed simulation results and human recording results of the second subject are

available in the supporting information.

Table 1. Percentage of time that PGD> 0.5 for inverse results via simulation type and region.

Data Source Proximal 1 Proximal 2 Distal 1 Distal 2

Normal Simulation 45.7 59.3 82.3 99.0

Abnormal Simulation 60.7 80.6 75 72.3

Noise Alone Simulation 0.0 0.0 1.67 0.0

Table notes: For the normal simulation, the PGD percentage increases from the proximal to the distal stomach locations. In the abnormal simulation the PGD

percentage remains highest in the second proximal and first distal regions, where we detect strong retrograde wave activity. As expected, the noise alone results show no

statistically significant wave propagation.

https://doi.org/10.1371/journal.pone.0220315.t001
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Results

In both abnormal and normal scenarios we generated a simulated EGG observation array and

injected AWGN with varying amounts of noise variance in terms of signal to noise ratio (50

dB SNR down to -4 dB SNR). From these noisy observations, we solved the inverse problem

associated with each of the four previously described penalties and evaluated the efficacy of

the methods with the correlation coefficient and root-mean-squared error (RMSE) against the

true simulated sources. We also provide the 3D results on the geometry as well as a time/space

representation of the surface electrical potentials. For the human data, we show the time/space

representation of the inverse as well as wave stomach region specific descriptions of propaga-

tion pertaining to (a) retrograde vs anterograde propagation and (b) the fraction of time there

is a statistically significant wave. These propagation patterns extract phase information across

time and utilize the relationship between phase and direction underlying the planar wave

equation to extract the PGD measure.

Simulated data

Fig 5 shows the results of the group sparsity method against several different noise levels, for

both normal (A) and abnormal (B) simulations. The plots for the other methods can be found

in the supporting information. In low SNR scenarios, the inverse results visually tracked the

ground truth in the distal portions of the stomach (positions 0-50) but struggled to reconstruct

Table 2. Percentage of PGD> 0.5 for inverse results on human recording and region.

Data Source Proximal 1 Proximal 2 Distal 1 Distal 2

Subject 1 17.9 33.7 42.5 97.5

Subject 2 24.6 92.1 7.9 95.6

https://doi.org/10.1371/journal.pone.0220315.t002

Fig 5. Group sparsity inverse solution on a stomach surface line across noise levels. A) Group sparsity results

(electrical potentials) against the ground truth for normal initiation simulation. B) Group sparsity results (electrical

potentials) against the ground truth for abnormal initiation. In both normal and abnormal simulations group sparsity is

able to reconstruct the ground truth wave pattern even under unrealistically noisy conditions. Additionally the time at

which it reconstructs the separate waves in the abnormal simulation is earlier (i.e. the waves are closer together) than in

any of the other inverse methods.

https://doi.org/10.1371/journal.pone.0220315.g005
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the wave in the proximal sections (positions 60-100). However, as the SNR increases, the

inverse solution reconstructs the wave in all portions of the stomach. The same findings hold

in the abnormal simulation. Additionally, the group sparsity is able to detect the separation of

wavefronts in the distal stomach earlier and more clearly than the other methods (see Figs A-C

in S1 File). In particular, for the 10 dB noise level, group sparsity is the only method that is

able to resolve the two nearby wavefronts in the distal segment at 4 seconds into the recording.

Additionally it is able to reconstruct wavefronts occurring in both the proximal and distal seg-

ments of the stomach simultaneously.

Fig 6 shows the correlation coefficient and RMSE mean across space for all methods, all

noise levels, and both normal and abnormal simulations. The group sparsity method remains

consistently higher in correlation coefficient and lower in RMSE across all noise levels and in

both simulation scenarios. In high additive noise cases (<10 dB SNR), the Kalman smoother

based inverse performs similarly to that of group sparsity; however in the abnormal case,

LASSO performs slightly better than the Kalman smoother.

Fig 7 shows the correlation coefficients and RMSEs for all methods at each point along

the geometric line in space, for both normal and abnormal simulations, at 10dB SNR. Again,

group sparsity has higher correlations and lower errors in both cases. As can be seen in Fig 4,

the normal simulation increases in signal amplitude in the distal stomach. The ability to

resolve signals in the distal stomach is likely a combination of both the closer proximity to the

abdominal surface and the increased signal strength. Specifically, our forward model given by

Eq (4) encodes the body conductivity and the distance between source and sensor points and

indicates that sources of the stomach with same amplitude that are closer to the abdominal

surface will go through less attenuation. The ability to better resolve signals across the entirety

of the stomach in the abnormal simulation is most likely due to the constant signal power in

the underlying simulation.

Fig 8 shows the localization results (electrical potentials) mapped back to the geometry for

the 10 dB noise level, at 6 seconds into the simulation, in both normal and abnormal cases.

The group sparsity method is the only one that resolves the two near wavefronts in the distal

stomach, and it is also the only method that can resolve both the activity near the distal

Fig 6. Average correlation coefficient and RMSE for different noise levels (All methods). A) Normal simulation

inverse results average correlation coefficient and RMSE as a function of AWGN noise level, B) Abnormal simulation

inverse results average correlation coefficient and RMSE as a function of AWGN noise level.

https://doi.org/10.1371/journal.pone.0220315.g006
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stomach and near the proximal stomach simultaneously. The ability of the group sparsity

method to resolve near wavefronts and activity across the entirety of the stomach suggests that

the joint assumptions of sparsity and smoothness, that it exploits, are critical for reconstruc-

tion of the underlying time-evolving gastric electrical activity.

Region-specific analyses of simulated data

We split the stomach into four sections (proximal 1, proximal 2, distal 1, and distal 2) so that

spatial wave propagation parameters can be found in a region-specific manner (see Fig 2C).

We analyzed the PGD in each of those regions over time, and found the percentages of time,

per region, in which PGDRðtÞ > 0:5. See Table 1.

Fig 7. Average correlation coefficient and RMSE for the 10 dB noise level across geometry (All methods). A)

Normal simulation inverse results average correlation coefficient and RMSE as a function of geometry, B) Abnormal

simulation inverse results average correlation coefficient and RMSE as a function of geometry.

https://doi.org/10.1371/journal.pone.0220315.g007

Fig 8. Time snapshot of the inverse results mapped back to geometry. A) Normal simulation at the 10 dB SNR level

at the 6 Second time point. B) Abnormal simulation at the 10 dB SNR level and the 6 second time point.

https://doi.org/10.1371/journal.pone.0220315.g008
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A byproduct of the PGD processing is direction information (anterograde or retrograde)

at each point along the organoaxial curve and at each point in time. Fig 9B and 9C

showcases region-specific histograms of anterograde vs retrograde propagation whenever

PGDRðtÞ > 0:5, for both normal and abnormal simulations. As expected, the normal results

have few retrograde waves in each of the four regions, and the abnormal results showcase a

large majority of retrograde waves for all regions except distal 2 (where the wave initiation

began). In distal 2, a majority of the waves operate in anterograde fashion, as shown by Fig 2.

Note that in the abnormal simulation, the signal amplitude remained constant across time,

whereas in the normative simulation the signal amplitude varied between the proximal and

distal sections of the stomach (see Fig 3). This may explain why the PGD percentages in the

proximal sections are higher for the abnormal simulation. More importantly, these results

showcase our ability to find the correct direction of propagation in the proximal regions

for both retrograde and anterograde, and owing to the large PGD percentages in both con-

texts, we have confidence that we can determine these directions for a large fraction of the

recording.

Human subject recording

We applied the group sparsity method to a two-minute window of data collected from two

human subjects. Both subjects had the same clinical description of motor function, specifically

severely delayed gastric emptying in the absence of a mechanical obstruction (severe gastro-

paresis) with 30% of radiotracer label still in the stomach at 4 hours during a gastric emptying

study. Whereas the first subject was diabetic, the most common known cause of gastroparesis

due to possible damage of the vagus nerve or enteric nerve cells [50], the second subject was

idiopathic, with no known reason for the severe delay in gastric emptying [51].

Fig 9. Wave direction histogram by stomach region, for time points in which PGD> 0.5. A) Color coded stomach regions B) Normal data

wave directions show strong anterograde wave propagation in all segments of the stomach. C) Abnormal data wave directions show strong

retrograde wave propagation in the first distal and all proximal segments, while we see strong anterograde propagation in the distal 2 segment.

This aligns with the simulation patterns. D) Human subject data wave directions show anterograde wave movement across all segments of the

stomach, the strongest region being the distal 2 segment.

https://doi.org/10.1371/journal.pone.0220315.g009
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While we do not have ground truth on which to compare the results, the group sparsity

method clearly resolves wave activity on the surface of the stomachs, as can be shown in Fig 10

for subject 1. This presence of sustained wave activity is confirmed quantitatively for both sub-

jects in Table 2, which indicates the percentage of time for which a statistically significant wave

is present (specifically, PGDRðtÞ > 0:5 for one second).

In human subject 1, all areas of the stomach showed wave propagation, with the distal 2 sec-

tion showcasing propagation during a significant percentage of the processed data set. The sec-

ond subject shows strongest activity in the distal 2 segment and the proximal 2 segment. Also

of note is that there is very little detected propagation in the distal 1 segment of subject 2,

which may be due to the curvature of this particular stomach, as is seen in Fig G in S1 File, ver-

sus that of subject 1 Fig 9. Differences in stomach geometry and stomach region proximity to

the cutaneous surface are likely explanations for the percentages shown in Table 2. Figs H and

I in S1 File show the localization results on the stomach geometry of the two human subjects.

For subject 1, as shown in Fig 9D, almost all waves with PGD>0.5 contain anterograde

propagation, strongly suggesting that this control subject does not have abnormal myoelectric

function. We also implemented the group sparsity method on white Gaussian noise to verify

that our estimation results were not due to chance. As shown in Table 1, the percentage of

time for which PGD> 0.5 for the white Gaussian noise simulation is 1.67% in the distal 1 seg-

ment and zero everywhere else. See Fig D in S1 File for the reconstructed electrical potentials

for the noise alone output.

Discussion

Simulation results

Our work provides a novel application of Bayesian methods for spatiotemporal analysis to

source localize the gastric slow wave. By exploiting the commonly used assumption of

Fig 10. Inverse solution for human subject data. As with the simulated data, this represents twelve seconds of computed inverse data across the

sources on the organoaxial curve.

https://doi.org/10.1371/journal.pone.0220315.g010
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equipotentials along the bands of the organoaxial curve, we were able to parameterize the

problem more succinctly (e.g. searching for optimal weights on an over-complete basis). These

methods are however generalized, relying only on the relative positions in space of the sources

and the sensors, the relationship between the source signal and the sensors (the forward

model), and the basis representation. The key assumptions we make with our group sparsity

prior are that there are only a few bands of stomach are electrically active at any point in time,

and that the electrical activity will evolve smoothly in time. Our method requires knowledge of

the stomach and abdominal positioning in 3D space, but otherwise the method is agnostic to

specific geometry. To this point, we include an additional human subject for which we devel-

oped a model with their CT and applied analogous normal and abnormal simulations for

which we evaluated the performance of the group sparsity estimator. For this second subject,

we also implemented the group sparsity method on an HR-EGG recorded data segment from

the post-prandial segment of data. The results are presented in the supporting information

(see Figs E-G in S1 File). As with the first subject, this method is able to reconstruct wave activ-

ity in all segments of the gastric surface and resolve the two nearby wave fronts that appear in

the distal 2 segment of the gastric surface in the disordered simulation.

Only recently have computationally efficient approaches that combine sparsity constraints

and linear state space dynamics been applied to the more richly studied EEG source localiza-

tion problem [52]. As such, our approach, which combines sparsity with state space modeling,

has the potential to be utilized in modern source localization problems for EEG research and

beyond.

Previous studies [31] focused primarily on generic physical models of both the torso and

the stomach. In this study, the torso and stomach models are taken directly from CT scans of

a human subject, and as a result the relationship between the torso (electrode positions) and

the stomach in geometry is more akin to a real subject recording. As a result of this, we also

see that the methods are better able to reconstruct wavefronts in different regions of the

stomach.

Table 1 indicates that for subject 1, the distal segments of the stomach showcase the stron-

gest recovery of wave activity in the normative simulation. Further, Fig 7 showcases that the

distal regions have comparatively superior reconstruction performance. This may in part be

explained by the fact that for the normative simulation, in accordance with known physiology

[35], the signal is stronger in the distal segments of the stomach. This may also be explained by

the fact that the anatomical CT for subject 1 shows that the distal segment is closer physically

to the abdominal surface. Specifically, by virtue of the denominator of Eq (4), this implies that,

absent of considerations of source amplitude, the stomach region closest to the abdominal

array (distal 2) more strongly contributes to the HR-EGG.

For the abnormal initiation simulation, we are more able to consistently reconstruct wave-

fronts across all regions of the stomach, as shown by Table 1. This is likely due to the fact that

the wave has consistent signal power, at the same magnitude of the antrum signal power of the

normative simulation, across all regions.

For subject 2, the simulated signal activity for the normative simulation still has highest

strength signal activity in the antrum. However, the stomach geometry is different from that of

subject 1, in particular with more curvature through the proximal and distal segments of the

stomach (see Figs H-I in S1 File).

Table A of the supporting information indicates that the proximal 2 segment showed stron-

ger wave activity (75.3%) than the distal 1 segment (64.3%). This suggests that the larger ampli-

tude in the distal 1 region as compared to the proximal 2 region was possibly counterbalanced

by the increase in curvature of the stomach, giving rise to variations in the numerator of Eq

(4), as compared to subject 1.
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We found that across noise levels and simulated conditions in subject 1, the group sparsity

approach results in lower squared errors and higher correlation coefficients than the other

methods explored. For the abnormal initiation scenario, in low SNR cases the LASSO slightly

outperforms the Kalman smoother, and for the normal scenario this is reversed. For abnormal

initiation scenario the assumptions about sparsity are perhaps more important than smooth-

ness. However, because the group sparsity approach showed superior performance against all

other models (in terms of both mean squared error and correlation coefficient) in all scenarios,

it implies that the assumptions of both time smoothness coupled with spatial sparsity are criti-

cal. This is further evidenced by the uniqueness of the group sparsity method in separating the

close wavefronts during the abnormal initiation, as shown in Figs 5 and 8. It was due to these

results that we focused solely on the group sparsity method for subject 2.

These results represent a critical step forward towards objective non-invasive inverse mea-

sures for gastric health. While Bayesian inference has been used in EEG and EKG inverse stud-

ies, our novel approach aggregates assumptions of spatial sparsity and temporal smoothness

into one prior distribution and thus one penalty. Compared to the classic methods, this

method shows significant and uniform improvement, thus compelling us to solely use this

method when analyzing human subject data.

Human data and clinical implications

In the human subject recording, we found that after applying our inverse procedure, not only

can we identify wave propagation, but we are also able to determine region specific propaga-

tion patterns that are consistent with what is known about stomach anatomy and physiology.

In the recording for subject 2 who is diagnosed with idiopathic gastroparesis we observe

significant and strong retrograde propagation in the proximal regions, as evidenced by 92.1%

detected wave activity from Table 2 as well as 100% retrograde activity found in the proximal 2

region (Fig G of S1 File). This differs from subject 1, who had robust wave detection and anter-

ograde activity in all regions (Fig 9). This subject was also involved in a recent clinical study

that used the HR-EGG to identify cutaneous spatial patterns [22]. The spatial patterns we

found using our inverse method on the gastric surface are consistent with the spatial patterns

found on cutaneous HR-EGG analyses from [22]. Specifically, in the inverse method we find

anterograde activity in all segments, which aligns with the spatial histogram from cutaneous

HR-EGG found in Fig GP-15 in the supplemental materials of [22]. The spatial abnormalities

in subject 2 are consistent with findings of loss of ICC cells in idiopathic gastroparesis patients

[53], which is known to contribute to gastric myoelectric spatial abnormalities. [12]. That

there were more detected spatial abnormalities in an idiopathic gastroparesis subject as com-

pared to a diabetic gastroparesis subject can perhaps be explained by findings of more severe

ultra-structural changes in ICC cells and nerves idiopathic gastroparesis patients as compared

to patients with diabetic gastroparesis [54].

Understanding the relationship between myoelectric activity in different parts of the stom-

ach can allow for sub-typing of gastric disorders. For instance, antrum and pylorus coordina-

tion or lack thereof can help predict (and thus explain) gastric emptying of meals in humans

[55]. As such, being able to non-invasively extract myoelectric patterns in stomach sub-types,

and evaluate their coordination, can give rise to etiologies of certain GI disorders and suggest

therapies. It was recently shown that spatial features from the cutaneous HR-EGG correlate

with symptom severity [22]. As such, our approach to identify spatial slow wave abnormalities

(such as abnormal initiations discussed here), in region-specific manners, may advance the

potential to enable guided therapies, such as ablation [56] or gastric pacing [57, 58] to normal-

ize the slow wave and ameliorate symptoms.
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One existing therapy, high frequency gastric electrical stimulation, has been shown to

improve symptoms by affecting central control of nausea and vomiting [59]. Moreover,

features from invasive electrical recordings on the stomach surface predict which patients

respond well to this therapy [15]. This suggests that if this information could be extracted non-

invasively, new opportunities exist to phenotype such disorders and assess their response to

interventions. In addition, recent efforts to directly modulate gastric electrical activity with an

artificial pacemaker have the potential to improve gastric function [60, 61]. However, deter-

mining the stimulation location and parameters and confirming the restoration of normal

electrical activity requires invasive measurements [62]. Our noninvasive approach could guide

these types of targeted therapies for gastric disorders, as has been done successfully in cardiol-

ogy with identifying and treating arrhythmias [63, 64].

Limitations and future research

The gastric slow wave is normally active at all times, but triggers more contractions when co-

regulatory factors (such as stretch from food ingestion) are present. This initial work used a

straight forward dynamic model which did not account for volume changes and region-spe-

cific deformations due to food or deformation due to contractions [65, 66]. Further, the

increase in contractions due to eating may give rise to stronger electrophysiologic potentials,

which was not modeled here. These aspects could be incorporated into both the forward

model and the prior for future studies.

There are two further approaches to extend this model. For one, our forward model

assumes a homogeneous space with the same conductivity to relate the gastric surface poten-

tials to the recorded abdominal potentials. In reality, there are tissues with different conductiv-

ities (e.g. fat and muscle) between the stomach and abdominal surface. Using models that

capture this information can be done in future work. Further, our model uses simple one-

dimensional wave equation propagation models to represent the spatiotemporal relationship

of the gastric electrical activity. Future work can take into consideration cellular compartment

models with differential equations, as has been done in other EGG modeling works [67–69].

Validation of these methods using abdominal recordings from a larger group of asymptomatic

human subjects as well as those with diagnosed disorders may further give credence to this

approach. Lastly, selecting regularization coefficients in a data-dependent manner when using

model-fitting procedures that leverage sparsity is a subject for future work [70, 71].

Conclusion

In this paper, we used CT images from human subjects to develop a basic dynamic dipole

model of the electrical activity on the surface of the stomach (the gastric slow wave). We solved

a forward model, then corrupted with additive Gaussian noise, to simulate cutaneous multi-

electrode recordings. Using these simulated observations, we found the inverse solution by for-

mulating the inverse problem as a MAP estimation problem to find a set of optimal weights on

a set of spatial Fourier basis functions. Each method we explored leveraged different assump-

tions about smoothness (Kalman smoother), sparsity (LASSO), a combination of the two

(group sparsity), and no assumptions at all (Tikhonov regularization). We found that in low to

no noise environments, Tikhonov regularization is sufficient. However, in noisier environ-

ments, the assumptions around smoothness have the most impact and result in lower RMSE

and higher correlation coefficients. Additionally, by incorporating a prior distribution for

which the MAP estimate takes advantage of both smoothness and sparsity (the group sparsity

approach), the results are even further improved. These results uniformly attained the highest

performance, for both abnormal simulations as well as normal simulations.

Bayesian inverse methods for characterizing gastric electrical activity from multi-electrode skin recordings

PLOS ONE | https://doi.org/10.1371/journal.pone.0220315 October 14, 2019 21 / 26

https://doi.org/10.1371/journal.pone.0220315


Finally, we applied this approach to an asymptomatic human subject who had previously

been imaged with CT. We found statistically significant results for wave activity, as well as

region specific wave direction information that is consistent with current knowledge regarding

normal gastric myoelectric function [11]. The presented methods may benefit from further

studies and validation on mammalian subjects against invasive “gold-standard” methods.

While further research is needed to verify this approach on more human subject data against a

secondary measure of electrical activity on the stomach surface, these initial results show sig-

nificant promise towards utilizing a non-invasive technique to localize electrical activity in dif-

ferent regions of the stomach, possibly even in ambulatory settings [30].

Supporting information

S1 File. The results of the other inverse methods (ridge regression, LASSO, and the Kal-

man smoother) as well as the results from the second human subject are presented here.

(PDF)

S2 File. The model data and results for subject 1 are included in this zip file. The files con-

tained are described in the README.txt file of the unzipped folder.

(ZIP)

S3 File. The results for subject 1 simulations are included in this zip file. The file is

described in the README.txt file of S2 File.

(ZIP)

S4 File. The model data and results for subject 2 are included in this zip file. The files con-

tained are described in the README.txt file of the unzipped folder.

(ZIP)
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