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Abstract—In this paper, we consider a dynamical system,
whose state is an input to a memoryless channel. The state of
the dynamical system is affected by its past, an exogenous input,
and causal feedback from the channel’s output. We consider
maximizing the directed information between the input signal and
the channel output, over all exogenous input distributions and/or
dynamical system policies. We demonstrate that under certain
conditions, reversibility of a Markov chain implies directed
information is maximized. With this, we develop achievability
theorems for channels with (infinite) memory as well as optimality
conditions for sequential estimation of Markov processes through
dynamical systems with causal feedback. We provide examples,
which includes the exponential server timing channel and the
trapdoor channel.

I. INTRODUCTION

Time reversibility plays an important role in disciplines

concerning dynamical systems, e.g. in physics (conservation

laws); statistical mechanics (in terms of equilibrium states);

stochastic processes (e.g. queuing networks [1] and conver-

gence rates of Markov chains [2, ch 20]); and biology (e.g.

trans paths in ion channels [3]). However, its use in providing

information-theoretic fundamental limits appears to be some-

what limited 1. In queuing systems, the celebrated Burke’s the-

orem [1], [6] uses time reversibility to show that, in a certain

stochastic dynamical system - an M/M/1 queue in steady-state

- the state of the system (queue) at time t is independent of all
outputs (departures) before time t. This observation has been

used in proving achievability theorems for queuing timing

channels [7], [8],[9]. In feedback information theory, statistical

independence of one random variable at time t from others up

to and including time t plays an important role - for example,

tightness conditions in the converse to the channel coding with

feedback 2. This begs the question: what might be the role
of time reversibility in characterizing information-theoretic
fundamental limits of stochastic systems with dynamics?. Or

in other words, what are the conditions when time reversibility

is sufficient in characterizing fundamental limits through via

implications of statistical independence? Recent developments

at the intersection of information theory and control have

1although Mitter et al [4], [5] have related Markov chain reversibility to
entropy flow and equilibrium states in thermodynamic systems

2which is part of the “posterior matching principle” for optimal communi-
cation with feedback over a DMC [10, Sec III],[11]

demonstrated how directed information [12], [13], [14], [15]

characterizes fundamental limitations of stochastic systems

with dynamics. Here, we consider a class of stochastic systems

for which time reversibility implies saturation of fundamental

limits that are characterized by directed information.

A. Problem Setup

Consider a dynamical system with exogenous inputs Z =
(Zi ∈ Z : i ≥ 0) where the state Xi ∈ X is an input to

a discrete memoryless channel (DMC) with output Yi ∈ Y:

PYi|Xi,Zi(yi|xi, zi) = PY |X(yi|xi), ∀i ≥ 0. (1)

The policy μ =
(
μi : X × Zi × Yi−1 → Y, i ≥ 1

)
of the

dynamical system governs how the state is affected by past

exogenous inputs, and channel outputs:

x1 � z0; xi = μi

(
zi−1, yi−1

)
, i ≥ 1 (2)

The statistics of all processes are governed by PZ , PY |X , and

μ - so we denote the system as (PZ , μ, PY |X). See Figure 1.

Examples of such systems in this setup could include:

PZ

Zi−1
μi

X1

Xi
PY |X

Yi

z−1Y i−1

Fig. 1. A random process Z ∼ PZ and dynamical system with policy μ.

• A queuing system, where Xi is the number of customers

at time i in the queue, Z is the arrival process, Y is

the departure process, and μ encodes the update laws of

a queuing system’s dynamics. Note that in the context

of communication without encoder feedback, feedback

appears because this is a channel with memory; it is

the objective to PZ (Section IV). Or, given a fixed

Poisson process PZ for the arrival process, the policy

μ can be optimized, to minimize the difference distortion

in timings between the input and output processes and

minimize the average queue lengths (Section V).
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• A biological system [16] where a ‘transmitter’ signals by

adding molecules into a system. The receiver samples

signals from the channel and withdraws a molecule,

which in the process modifies the state (e.g. chemical

concentration) of the system.

• A brain-machine interface [17], where Z is a Markov

process representing a human’s intended trajectory of

some smooth path. Xi represents the subsequent ‘in-

tended’ thought the user specifies to the interface. The

interface observes a noisy version, Yi. Note that here, the

importance of the dynamical system is paramount: the

interface visually (or otherwise) provides Yi
3 back to

the user - who uses a strategy (policy) μ to guide the

decoder’s estimate in the same vicinity of the intended

trajectory Z. The objective is to develop an optimal

strategy μ and estimator to minimize distortion between

the estimate Ẑ and the source Z (Section V).

Define the capacity-cost function [18] to be the maximum

mutual information between the state process and the channel

output subject to a ‘stability’ constraint on X:

C(η, PY |X , b) � max
PXs.t. E[η(X)]≤b

I(PX , PY |X), (3)

I(PX , PY |X) � I(X;Y )

where η : X → R+ is the state cost function. The reason to

specify a cost function η on the state X and not Z is two fold:

(1) in control-like scenarios, (1a) Z need not be stationary and

(1b) X is the state of some physical system that is desired to be

stable; (2) in many communication scenarios, a cost function

on X is equivalent to a cost function on Z (See Section VI).

The directed information I(Zn → Y n) represents the ‘causal’

effect that the source process Z has on the channel output Y
(which may differ from I(Zn; Y n)) and is given by [19]:

In(PZ , μ, PY |X) � 1
n

I(Zn → Y n) =
n∑

i=1

I(Zi−1; Yi|Y i−1) (4)

For the system (PZ , μ, PY |X) in Fig 1, In(PZ , μ, PY |X) is

upper bounded by the capacity C(η, PY |X , b) as follows:

In(PZ , μ, PY |X)=
1
n

[
n∑

i=1

H(Yi|Y i−1) − H(Yi|Zi−1, Y i−1)

]

=
1
n

[
n∑

i=1

H(Yi|Y i−1)−H(Yi|Zi−1, Y i−1, Xi)

]

(5a)

=
1
n

[
n∑

i=1

H(Yi|Y i−1)−H(Yi|Xi)

]
(5b)

≤ 1
n

[
n∑

i=1

H(Yi) − H(Yi|Xi)

]
(5c)

≤C(η, PY |X , b) (5d)

3or some signal - say Ẑi representative of Yi

where (5a) follows from (2); (5b) follows from (1); (5c) fol-

lows because conditioning reduces entropy; and (5d) follows

from (3). The equalities in (5c) and (5d) hold if and only if:

I(Yi;Y i−1) = 0; ⇔ I(Xi; Y i−1) = 0 (6)

PXi
∼ P̄X(η, PY |X , b) � arg max

P ′
X

I(P ′
X , PY |X) (7)

Conditions in (6) are equivalent because of memorlyless

property of the DMC (1). Thus the directed information of

the system (PZ , μ, PY |X) with state constraint is maximized

if the conditions (6) and (7) are satisfied. (6) implies sta-

tistical independence of Xi with Y i−1 and is analogous to

the statement made by Burke’s theorem in Sec I - which

was proven using reversible Markov chains. This indicates

a possible connection between reversible Markov chains and

saturating the fundamental limits of certain stochastic systems.

Section III provides the main theorem - that weds re-

versibility of Markov chains with maximization of directed

information - by providing a sufficient condition for (5d) to

be tight in terms of an underlying reversible Markov chain.

We then begin to explore what the tightness of (5d) means

within the context of the system (PZ , μ, PY |X) described in

Figure 1, by (i) providing the cost-constrained capacity for a

class of infinite-memory communication channels with input Z
and output Y , (Section IV); and (ii) providing a sufficient con-

dition for optimality of linear-time-invariant estimator pairs for

sequential estimation of Markov processes through dynamical

systems with causal feedback (Section V). In both cases, time-

reversibility is used to prove optimality. Section VI provides

examples, which include the exponential server timing channel

(ESTC) [7], [8] and the trapdoor channel [20],[21].

II. DEFINITIONS AND NOTATIONS

• We write Z⊥⊥W if Z and W are independent.

• Define S as the set of stationary Markov policies, i.e.

xi = μi

(
zi−1, yi−1

)
= μ (xi−1, zi−1, yi−1) , i ≥ 1 (8)

• A random process W = (Wi : i ≥ 1) is a

Markov chain with matrix P if PWk+1|W k

(
wk+1|wk

)
=

PWk+1|Wk
(wk+1|wk). If the Markov chain is positive

Harris recurrent (PHR), then a unique invariant distri-

bution π exists, which satisfies πT = πT P .

• If Z∞
1 are i.i.d., then from (1) and (8), X is a Markov

chain. Suppose μ ∈ S. Define Ψ
(
μ, PY |X

)
to be the set

of PZ s.t. (a) Z∞
1 are i.i.d. ∼ PZ and independent of

Z0, (b) the subsequent Markov chain X is PHR, and (c)

Z0 = X1 ∼ π � π(PZ , μ, PY |X).
• Denote R (W) as the set of reversible Markov chains

distributions on W , namely the set of PW for which

(a) W is a PHR Markov chain, and (b) the forward and

reverse time processes are statistically indistinguishable:

(Wj : 1 ≤ j ≤ n) d= (Wn−j+1 : 1 ≤ j ≤ n) (9a)

⇔ πiPij = πjPij ∀i, j ∈ W (9b)
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III. MAIN THEOREM

In this section, we will show that a policy with a linear,

time-invariant Markov structure and i.i.d. exogenous source

PZ results in (5c)-(5d) being tight - provided an underlying

Markov chain is reversible.

Definition 3.1: Denote L to be the set of systems

(PZ , μ, PY |X) s.t.:

(a) For some field F, Z = X = Y = F and μ satisfies:

xi = xi−1 + a2zi−1 + a3yi−1 (10a)

= x̃i−1 + a2zi−1 (10b)

x̃k � xk + a3yk. (10c)

(b) PZ ∈ Ψ
(
μ, PY |X

)
,

(c) PX,X̃ ∈ R (X × X ),
(d) π(PZ , μ, PY |X) ∼ P̄X(η, PY |X , b)
Note that x̃ in condition (a) is the update to the state after the

output of the channel is taken into consideration and before
the source z is updated to the state. Condition (b) means that

the source distribution consists of i.i.d. inputs. Condition (c)

is the key time reversibility condition on (X, X̃), which in

many scenarios is equivalent to a reversibility condition on X
(e.g. when X is a birth-death chain [22]). Lastly, condition

(d) simply states that each Xi ∼ P̄X(η, PY |X , b). With this

definition, we have the following theorem:

Theorem 3.2: If (PZ , μ, PY |X) ∈ L, then

In(PZ , μ, PY |X) = C(η, PY |X , b).
Proof: Following [6], [22], note from (10c) that:

yk = a−1
3 (x̃k − xk) (11)

zk−1 = a−1
2 (xk − x̃k−1) (12)

As such, we have

I
(
X̃i; Y i−1

)
= I

(
X̃i; (X̃k − Xk) : 1 ≤ k ≤ i

)
(13)

= I
(
X̃i; (X̃k−1 − Xk) : i + 1 ≤ k ≤ 2i

)
(14)

= I
(
X̃i; Z2i−1

i

)
(15)

= 0, (16)

where (13) follows from (11); (14) from Defn. 3.1(d) and

(9a); and (15) from (12); and (16) from Defn 3.1 (c).

Thus X̃i⊥⊥Y i−1. From Defn 3.1 (c) and (10c), this im-

plies that Xi⊥⊥Y i−1. Also since Zi ∼ P̄X(η, PY |X , b) from

Defn 3.1(d), equations (6) and (7) are satisfied and thus

In(PZ , μ, PY |X) = C(η, PY |X , b).
IV. FIXING μ AND OPTIMIZING PZ

In this section, consider fixing μ = μ∗ of structure (10)

and optimizing over PZ to maximize In(PZ , μ, PY |X), as in

Figure 2. We demonstrate here that not only is the upper bound

In(PZ , μ, PY |X) ≤ C(η, PY |X , b) tight when reversibility

holds, but reliable communication from Z to Y - a channel

with infinite memory - up to capacity C(η, PY |X , b) is pos-

sible. The proof again uses the fact that reversibility implies

statistical independence to invoke a SLLN for Markov chains.

Lemma 4.1: Consider communication over the infinite

memory channel with μ fixed, given by (10). If there exists a

PZ

enc

Zi−1 Xi = Xi−1
+a2Zi−1
+a3Yi−1

μ∗

X1 = Z0

Xi
PY |X

Yi

z−1
Y i−1

Fig. 2. Feedforward communication over a channel with memory (and
internal feedback) with inputs Z and outputs Y .

P ∗
Z ∈ Ψ

(
μ, PY |X

)
s.t. the system (P ∗

Z , μ∗, PY |X) ∈ L, then

the channel has capacity C(η, PY |X , b).
Proof: To prove achievability, we use the information

density. iZn,Y n(zn, yn) � log PY n|Zn (yn|zn)

PY n (yn) [23]:
1
n

log iZn,Y n(Zn, Y n)

=
1
n

n∑
i=1

log
PYi|Y i−1,Zi−1,Zn

i

(
Yi|Y i−1, Zi−1, Zn

i

)
PYi|Y i−1 (Yi|Y i−1)

=
1
n

n∑
i=1

log
PYi|Y i−1,Zi−1

(
Yi|Y i−1, Zi−1

)
PYi|Y i−1 (Yi|Y i−1)

(17)

=
1
n

n∑
i=1

log
PYi|Y i−1,Zi−1,Xi

(
Yi|Y i−1, Zi−1, Xi

)
PYi|Y i−1 (Yi|Y i−1)

(18)

=
1
n

n∑
i=1

log
PYi|Xi

(Yi|Xi)
PYi

(Yi)
(19)

a.s.→ I(π, PY |X) = C(η, PY |X , b) (20)

where (17) follows because the Zn
i ⊥⊥Zi−1; (18) follows from

from (2); (19) from (1) and the fact (Thm 3.2) that Yi⊥⊥Y i−1;

and (20) follows from the Strong Law of Large Numbers for

Markov Chains applied to (Wi = (Xi, Yi) : i ≥ 1) [2].

The converse follows from a simple application of Fano’s

inequality as it pertains to the message W ∈ {1, . . . , 2nR}:

R ≤ εn +
1
n

I(W ; Y n) = εn + In(PZ , μ, PY |X)

≤ εn + C(η, PY |X , b).

V. FIXING PZ AND OPTIMIZING μ

In this section, we consider sequential estimation of a

Markov processes through a dynamical systems with causal

feedback. 4 Given an i.i.d. source Z̃∞
0 over a field F drawn

∼ PZ , define its Markov process representation as

Z0 = Z̃0, Zi = Zi−1 + c2Z̃i. (21)

In this setting, we are interested in tracking Z as it is passed

through a noisy channel. But the policy μ gets to know the

4This appears to be related to the joint-source channel coding problem with
feedback and bandwidth expansion given in [24, Sec. 4.2], but there are two
differences: (a), the source Z here will be modeled as a (non-stationary)
Markov process; (b) the distortion function will operate on the state, the
reproduction, and the previous reproduction (to bring forth the nature of the
dynamical system). These two considerations were explicitly developed to
relate this to problems of decentralized of control [25], [12].
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Zi−1 μi

X1

Xi
PY |X

Yi
di

Ẑi−1

z−1Y i−1

Fig. 3. sequential estimation of a Markov process through a dynamical
system with causal feedback

output of the noisy channel, to help guide the estimator d =(
di : Yi → Z, i ≥ 1

)
. So we have two costs that we have

to attempt to make low: (1) the cost of bad reproductions,

represented with a time-invariant distortion measure given by

ρ : Z × Z × Z → R+ and (2): the state cost function that

relates this to control and stability, measured by η(x). So in

short, our expected cost is given by

ρn(zn, ẑn) =
1
n

n∑
i=1

ρ(zi, ẑi, ẑi−1) + αη(xi). (22)

where α > 0 balances the importance of control of X and

estimation of Z. We must optimize the (possibly non-linear,
time-varying) policy, decoder pair:

(d∗, μ∗) = arg min
d,μ

Ed,μ[ρn(Zn
1 , Ẑn

1 )] (23)

Ẑn � dn(Y n). (24)

The sequential rate distortion function is [12, Ch. 5]:

−→
Rn(D) � inf

P∈−→P n(D)

1
n

I(Zn → Ẑn) (25)

−→P n (D) �
{

PẐn|Zn : E[ρn(Zn
1 , Ẑn

1 )] ≤ D, (26)

PẐi|Ẑi−1,Zn = PẐi|Ẑi−1,Zi−1 ∀i ∈ {1, . . . , n}
}
(27)

(27) encodes the physical constraints of causal encod-

ing/decoding imposed on each di. It is already known (c.f.

[12, Lemma 5.4.2]) the minimizer of
−→
Rn(D) will have an

added benefit: it will satisfy PẐi|Ẑi−1,Zi = PẐi|Ẑi−1,Zi
for

any Markov process Z. This hints at a possible time-invariant

structure for the policy, estimator pair.

For any μ and d s.t. PX satisfies the stability constraint

E[η(X)] ≤ b and PẐn|Zn ∈ −→P n (D), then:

−→
Rn(D) ≤ 1

n
I(Zn → Ẑn)

≤ 1
n

I(Zn → Y n) (28a)

≤ C(η, PY |X , b) (28b)

(28a) follows from the data processing inequality, and

(28b) follows from (5d) and the definition of C(η, PY |X , b).
Note that this holds with equality if and only if: (a) di is

information-lossless; (b) Xi⊥⊥Y i−1 for all i, and (c) Xi ∼
P̄X(η, PY |X , b).

A policy-estimator pair (μ, d) is LTI if for some c̃3 
= 0:
xi = zi − ẑi−1, ẑ0 = 0; ẑi = ẑi−1 + c̃3yi, i ≥ 1 (29a)

From (29) and (21),

xi = xi−1 + (zi − zi−1) − (ẑi−1 − ẑi−2) (30a)

= xi−1 + c2z̃i − c3yi−1 (30b)

and so (29a) is equivalent to (10) operating on the i.i.d. process

Z̃ - so this machinery is equivalent to the stationary Markov

policy setup in Section III.

Definition 5.1: We say an LTI policy-estimator pair

(μ∗, d∗) are optimal if they minimize (22) for some α > 0.

In other words, this definition means no other policy-estimator

pair (μ, d) could result in smaller distortion without increasing

expected state cost.

Theorem 5.2: Consider a Markov source Z defined as (21),

DMC PY |X , fixed state cost function η and sequence of

distortion functions ρ. Then under the LTI policy-estimator

pair (μ, d) is optimal if for some α1, α2 > 0 and ρ′ : X → R:

(a.) the Y are i.i.d.

(b.) η(x) = α1D
(
PY |X=x‖PY

)
+ η0

(c.) ρ(z, ẑ, ẑ′) = −α2 log PY |X
(
( ẑ−ẑ′

c̃3
)|(z − ẑ′)

)
+ ρ′(z)

Proof: Note that from (29), Ẑi and Y i form a bijection.

By virtue of (29) and the DMC (1), it follows that

PẐi|Ẑi−1,Zn

(
ẑi|ẑi−1, zn

)
=PẐi|Ẑi−1,Zi−1

(
ẑi|ẑi−1, zi−1

)
(31)

= PY |X

(
(
ẑ − ẑ′

c̃3
)|(z − ẑ′)

)
(32)

where (31) follows from (27), which holds for any Markov

source with causal encoder [12]; (32) follows from (29),(1).

Note as a consequence that

1
n

n∑
i=1

ρ(zi, ẑi, ẑi−1) = −α2 log PZn,Ẑn (zn, ẑn) + ρ′(zn) (33)

1
n

n∑
i=1

η(xi) = α0D
(
PY n|Xn=xn‖PY n

)
+ η0 (34)

where the latter holds because Y n are i.i.d. Thus, since Y n

are i.i.d., for this setting,
−→
Rn(D) = C(η, PY |X , b). The rest

of the proof follows directly from [18].

This leads to a corollary linking reversibility and optimality:

Corollary 5.3: If an LTI policy-estimator pair leads to

Z ∈ Ψ
(
μ, PY |X

)
, then it is optimal with respect to η and

ρ specified by Thm 5.2 conditions (b)-(c).

So in these algebraic settings, the distortion measures that are
sufficient for optimality are time-invariant.

VI. EXAMPLES AND DISCUSSION

A. Gaussian Channels

Consider the problem in Section V with Z̃i are i.i.d. Gaus-

sian, η(x) = x2, an additive Gaussian channel, and squared

error distortion. We recover the optimality of using an LTI

state-estimator pair, with c̃3 playing the role of the sequential

MMSE estimator [25],[12, Chap 6] by invoking Theorem 5.2

directly.
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B. Queuing Timing Channels

Let F = Q, η(x) = +∞1{x/∈Z∪x<0}. Consider the policy μ
given by (10) with c2 = 1, c̃3 = 1 and the DMC with outputs

y ∈ {0, 1} specified by the Z channel:

PY |X(1|x) =

{
0 x = 0
μΔ x > 0

(35)

where Δ 
 1. This represents the ESTC of rate μ: Yi = 1
when a departure occurs, and Zi represents the number of

arrivals in the ith length-Δ time slot, and service times are

exponentially distributed (see [7, Fig 4]). With Z∞
1 i.i.d. with

P (Zi) = e−1μΔ and Z0 a geometric variable of parameter

e−1, the subsequent birth-death Markov chain is stationary,

and so Theorem 3.2 applies. This recovers the Poisson process

of rate λ = e−1μ as the optimal input distribution to the ESTC,

and moreover, its capacity 5. From this perspective, although

an ESTC is nonlinear with infinite memory, it is composed of a

memoryless channel and an algebraic, LTI, dynamical system

with internal feedback. This leads to an alternative way to

understanding its capacity.

Now consider Section V with c2 = 1 in (21) and Z̃i ∈ {0, 1}
with P (Zi = 1) = λΔ. Then Z represents the counting

function representation of a Poisson process. Note that with

the appropriate “queuing distortion measure” [26] specified

as in Theorem 5.2, note that something interesting follows:

of all possibly dynamical system policies and estimators,

selecting the policy-estimator pair (μ, d) to be the dynamics

of a queuing system (29) (with c̃3 = 1 implying Ẑ is the

counting function representation of the departure process Y ),

is optimal. This also implies that uncoded transmission of a

Poisson process over an ESTC is optimal.

Other extensions to queuing timing channels fit within this

framework as well: see for example the variety of queuing

systems in [22] for which joint reversibility holds. Another

such queuing timing channel is an example of Gallager: ‘the

queue with feedback’ [1, p 204-205]. Here, with probability

1 − p0 departures from the queue instantaneously return to

the input of the queue (independent of all other processes).

The ‘effective’ Z channel changes μΔ to p0μΔ and all other

arguments hold. In these cases, our cost-capacity theorem

provides the capacity of such channels.

C. The Chemical (Trapdoor) Channel

Let F = Q, η(x) = +∞1{x/∈{0,1,2}}. Consider the policy μ
given by (10) with c2 = 1, c̃3 = 1 and the DMC with outputs

y ∈ {0, 1} specified by the ‘inverted’ Z channel:

PY |X(1|x) =

⎧⎪⎨
⎪⎩

0 x = 0
1
2 x = 1
1 x = 2

(36)

Here, the ‘chemical channel’ [16], [20], [21] has a state X ∈
{0, 1, 2} represents the number of red balls in a system that can

5Also, if we let the state cost function η(x) = 1 for all non-negative
integers and ∞ otherwise, then any b ∈ (0, 1), places a constraint on the

queue utilization - given by λ
μ

. This equates to a constraint on the rate of the

input process Z and recovers the rate-constrained capacity C(λ, μ) = λ log μ
λ

contain two balls, each of which is either red or blue. At each

time, one of the two trapdoors is opened randomly, with Y=1
if a red ball departs and 0 otherwise. Each entering ball Zi is

either red (1) or blue (0). With Z∞
1 i.i.d. with P (Zi = 1) = p,

the three-state Markov chain is birth-death with steady-state

distribution π = [p2, 2p(1 − p), (1 − p)2] and I(π, PY |X) =
hb(π0 + 1

2π1)−π1. Thm 3.2 and reversibility imply that R <
I(π, PY |X)

∣∣
p= 1

2
= 0.5 is achievable - coinciding with [20].
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