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ABSTRACT | Modern neuroscientific recording technologies

are increasingly generating rich, multimodal data that provide

unique opportunities to investigate the intricacies of brain

function. However, our ability to exploit the dynamic, interac-

tive interplay among neural processes is limited by the lack of

appropriate analysis methods. In this paper, some challenging

issues in neuroscience data analysis are described, and some

general-purpose approaches to address such challenges are

proposed. Specifically, we discuss statistical methodologies

with a theme of loss functions, and hierarchical Bayesian

inference methodologies from the perspective of constructing

optimal mappings. These approaches are demonstrated on

both simulated and experimentally acquired neural data sets to

assess causal influences and track time-varying interactions

among neural processes on a fine time scale.

KEYWORDS | BRAIN initiative; directed information; human

brain project; loss function; minimax regret; optimal transport

theory; point processes; prediction with expert advice

I . INTRODUCTION

The brain is arguably the most complex dynamic system in

nature, and understanding how it works is one of the

greatest challenges in science. Recently, the developments

of existing recording techniques and the advent of new

measurement methods in neuroscience have provided us
with rich amounts of data, which allowed us to investigate

fundamental neuroscience questions in an unprecedented

manner [1], [2]. For example, the recent development of

simultaneous recording of activity from multiple neurons

provided us with new opportunities to understand how

complex function and computation arises from networks of

interacting neurons [3]. These recording technologies will

be accelerated by the Brain Research through Advancing
Innovative Neurotechnologies (BRAIN) initiative [4], [5].

Most standard analysis methods are developed primar-

ily for a specific modality, such as continuous-valued data

and designed for problems in which the structure in the

data is static rather than dynamic [3]. As we collect rich

data sets, across multiple modalities and time scales, these

inadequacies in traditional methods will limit our ability to

develop effective scientific conclusions or advance trans-
lational therapies. Here, we briefly describe some chal-

lenging analysis issues in neuroscience research.

• Complexity: The speed of evolution of neuro-

technologies is growing the size of neural data sets

that are acquired, and the BRAIN initiative will

perhaps only accelerate this process. As such,

management of complexity across multiple fronts

will be of paramount importance. First, the
complexity of the data acquired will render it useless

to humans for interpretation unless appropriate

simplification of the data is carried out. In some

Manuscript received October 23, 2013; revised January 30, 2014; accepted February 10,

2014. Date of publication April 2, 2014; date of current version April 28, 2014. This work

was supported in part by the National Science Foundation (NSF) under Grants

CCF-1065022 andCCF-0939370, in part by theAir Force Office of Scientific Research

(AFOSR) under Grants FA9550-11-1-0016 and FA9550-10-1-0573, and in part by

the NSF under Grants CCF 10-54937 CAREER and CCF 10-65022. The work of

C. J. Quinn was supported by the Department of Energy Computational Science

Graduate Fellowship under Grant DE-FG02-97ER25308.

S. Kim and T. P. Coleman are with the Department of Bioengineering, University of

California San Diego, La Jolla, CA 92093 USA (e-mail: s2kim@ucsd.edu;

tpcoleman@ucsd.edu).

C. J. Quinn is with the Department of Electrical and Computer Engineering, University

of Illinois, Urbana, IL 61801 USA (e-mail: quinn7@illinois.edu).

N. Kiyavash is with the Department of Industrial and Enterprise Systems Engineering,

University of Illinois, Urbana, IL 61801 USA (e-mail: kiyavash@illinois.edu).

Digital Object Identifier: 10.1109/JPROC.2014.2307888

0018-9219 � 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Vol. 102, No. 5, May 2014 | Proceedings of the IEEE 683



sense, there is a need to transform the ‘‘big data’’ that
is collected into ‘‘small data’’ that can be easily

visualized, and that balances ease of visualization

with neurobiological relevance to the mechanism of

interest. The details of this balance will undoubtedly

be application specific, but ideally a common set of

core principles can be applied, by tying it to

subsequent decision making that will ensue. Second,

the sheer amount of neural data of various types
require the development of highly efficient algo-

rithms, which in some instances, e.g., neural

prosthetics, will be needed to be implemented in

real time [6], [7].

• Dynamics: The stochastic nature of ensemble

activities of neural processes and the interaction

among neural circuits require statistical analysis of

ensemble recordings that succinctly reflect inter-
action and causal relationships. Thus, methodolo-

gies that can directly elucidate these interactions

are urgently needed. In addition, in some in-

stances, the time scales over which these interac-

tions change are faster than what is required to

effectively use statistical approaches assuming

time homogeneity. Such nonstationarities exacer-

bate the need to develop theoretical tools, and
algorithms that are able to characterize the

dynamics of these neural patterns.

• Uncertainty: Because of the massive amount of

data in ensemble recordings and their rich

dynamics, the imperfections in our idealized

models may lead to uncertainty in our predictions.

As such, quantifying the uncertainty, and ensuring

sufficient information aggregation that allows for
reliable decision making under uncertainty, will be

a dominant theme moving forward.

Although there are individualized methods that are

tailored to one specific modality or one specific time scale

of dynamics, there is an increasing need to develop a set of

core theoretical principles that guide the philosophical

underpinnings of algorithms that are then suited to specific

physiological or mechanistic scenarios of neuroscientific
interest. There is increasing interest from the fields of

classical statistics, control theory, and information theory

at taking these core theoretical principles and tailoring

them toward the analysis of complex neural data [8]. In this

paper, we will develop a coherent philosophical framework

that is rooted in the aforementioned disciplines, guides all

of the procedures we develop, and is broadly applicable

across various modalities and time scales.
Specifically, in this paper, we will address a part of

these challenges by developing efficient, quantitatively

rigorous methods to track time-varying statistical dynamics

of ensemble neural activity as well as parsimonious

modeling and visualization tools to concisely describe

multivariate neural responses. We will show that all of

these methods are fundamentally developed based on loss

function and optimal transport theory [9], [10]. This

framework enables us to understand the underlying
dynamic mechanism of the data set in any modality and

assess the important properties of complex neural systems

with low complexity. Table 1 attempts to provide a concise

explanation of the challenges we foresee, and how the

methodologies and specific algorithms that are introduced

in this paper provide attempts at ameliorating these

challenges.

When this framework is also physiologically guided, we
can exploit the unique features of neuroscience data to

develop new analysis tools to provide us new insight into

them.

New recording technologies combined with appropri-

ate analysis methods will have a significant impact on basic

and clinical neuroscience research, and will have great

synergy with the Human Brain Project to perform

inference on existing neural data, simulate the human
brain, and provide insights on future experiments or

medical therapies [11], [12]. Succinct and dynamic

representation of multiple neural data can be used to

analyze the complex pattern of interconnected neuronal

networks, and detect the origin or the direction of

information propagation within the brain on fine time

scales. Characterization of these complex networks will

provide us a deeper understanding of the mechanism by
which the brain works, leading to the improved diagnoses

of neuropathologies, improved neural prostheses, and

offering unique opportunities to explicitly link experimen-

tation and computational modeling by using the informa-

tion from the experiments to quantify better prediction

from more complex models.

The rest of the paper is organized as follows. Section II

suggests a general framework for addressing statistical
challenges in neural data analysis from loss function

perspective. Section III describes an efficient Bayesian

inference with optimal maps to address computational

issues in neural data analysis. Section IV shows the

application of these frameworks to the analysis of

multivariate neural spike trains. Section V concludes and

discusses the paper.

Table 1 Concise Explanation of the Challenges for Neural Data Analyses

That We Foresee and Some Methods

Kim et al. : Dynamic and Succinct Statistical Analysis of Neuroscience Data

684 Proceedings of the IEEE | Vol. 102, No. 5, May 2014



II . ANALYSIS FROM LOSS FUNCTION
PERSPECTIVE

Advances in recording technologies continue to provide
richer, higher dimensional neuroscience data across a

multitude of time scales and modalities. Although

elementary statistical analysis methods such as cross

correlation [13] and joint peristimulus time histogram

(JPSTH) [14] are still widely used in neural data analysis,

there is a growing need to match the sophistication of

experimentation with that of ways to characterize these

dynamic neural processes. Specifically, as neuroscience
experiments grow in their complexity, it becomes increas-

ingly challenging to disambiguate the variability across

time scales and neural processes as an epiphenomenon,

chance, or reflection of a novel mechanism.

However, at the same time, there is a need to balance a

small set of philosophical approaches to modeling and

inferring with data, with being neurobiologically plausible

and relevant. Here, we demonstrate how measuring per-
formances and designing algorithms from loss function per-

spective provide a foundation for capturing this variability

while still embodying neurobiological plausibility.

A. Prediction and Loss Functions
In this section, we describe a conceptual approach

toward developing a suite of robust, scalable, modality-

agnostic methods for statistical analysis of neural data that

are not only relevant now, but will continue to maintain

relevance as the BRAIN and other initiatives create

increasingly rich neural data sets.
Prediction is concerned with guessing an outcome that

has not yet been observed. For example, one specifies a

prediction p on the next outcome y of a random or

unknown sequence given the past outcomes and possibly

side information. As a general way to measure the

performance of statistical modeling, we consider a loss
function lðp; yÞ, which defines the quality of the prediction

and thus increases as prediction p deviates more from the
true outcome y. Although there are a variety of loss

functions for specific modalities, e.g., the squared error

loss, absolute loss, 0–1 loss, etc., we will primarily consider

the logarithmic loss, which is applicable to any modality

y 2 Y where Y represents the set of possible outcomes. In

this setting, the prediction p lies in the space of probability

measures over y, i.e., p ¼ fPðyÞ : y 2 Yg. Given a predic-

tion p for an outcome y 2 Y, the log loss is represented by

lðp; yÞ ¼ � log pðyÞ: (1)

The log loss, also termed the ‘‘self-information’’ loss, is

the ideal ‘‘Shannon’’ code length for compression of a

symbol y drawn from distribution p and achieves the

minimum expected total codelength for any uniquely

decodable data compression scheme [15]. From the

perspective of multimodal neuroscience data analysis,

the log loss has the desirable property that the prediction p
lies in the space of beliefs over Y, so that we can develop

neurophysiologically specific classes of statistical models

unique to each modality but still have a common way to

perform statistical inference upon them.

B. Causal Inference: Reduction in Loss
Progress in neural recording technologies provides us

multivariate time series neural data [1]. The number of
simultaneously recorded neurons has been doubling every

seven years since the 1950s, and with current multiple-

electrode technology, hundreds of individual neurons can

be recorded simultaneously [16]. What will be of

paramount importance are succinct ways that humans

can take this information, extract statistical meaning out of

it, and characterize brain function or develop treatment

options for intervention.
One class of methods to visualize statistical relation-

ships between networks of random variables are traditional

graphical models. In particular, Markov networks and

Bayesian networks represent two different perspectives on

the structure of networks of random variables. Markov

networks directly represent the dependence between each

pair of variables, conditioned on all other variables.

Bayesian networks represent factorizations of the joint
distribution, so each variable potentially depends on

preceding variables, and then the conditional terms are

reduced. See [17] for an overview of graphical models.

Attempts to model the interactions of simultaneously

recorded neural responses may be able to shed light on

how the networks of neural processes represent and

process information. If we have N random processes

recorded across T time units, then visualization of
statistical relationships in terms of a network of N � T
random variables can be cumbersome and grows as our

recording interval T increases. Moreover, such a repre-

sentation will not aid with visualization of the structure of

interdynamics of coupled time series, for instance, how the

past of some processes affects the future of others.

A variety of quantitative techniques have been devel-

oped to elucidate the functional properties of complex
neural network [3], [13], [14]; however, most methods that

attempt to identify associations between neural responses

offer little insight into the directional nature of the neural

system, or sometimes provide a misleading picture on the

network. In this section, we discuss a general-purpose

framework, resting upon the log loss, to develop an

inference engine that uncovers the interactive nature of N
time series as a directed graph on N nodes where a directed
edge encodes information about how the past of some

processes affects the future of others (see Fig. 1).

Within a context of a network, we aim to design an

inference engine to produce a directed graph description

to elucidate causal interactions between neural processes,

over space and time, as shown in Fig. 1. Recently, Granger

causality has proven to be an efficient method to infer
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directional relationships between sets of neural responses

[18]–[20]. The basic idea of causality between time series

was originally introduced by Wiener [21], and later

Granger formalized it as follows [22]:

‘‘We say that X is causing Y if we are better able to

predict the future of Y using all available information

than if the information apart from the past of X had

been used.’’

Granger instantiated this idea for practical implemen-

tation using multivariate autoregressive (MVAR) models

and linear regression. There is a class of graphical models
developed to represent Granger’s principle, known as

Granger causality graphs [23]–[25]. These are mixed graphs

(both directed and undirected graphs) for multivariate

autoregressive time series. Nodes represent processes. The

directed edges represent causal influences, as measured by

Granger causality. The undirected edges represent instanta-

neous correlation. However, it is challenging to identify

nonlinear relationships with this approach, and in other
situations, it is conceptually mismatched. For example,

neural spike trains are a binary time series on a millisecond

time scale: either one spike occurs or it does not. In [23], it is

suggested that, conceptually, Granger causality graphs could

be employed for nonlinear relationships. However, it is

mentioned that some properties of the graphical model

would not hold. They also suggested it would be impossible to

infer structures where causal influences were nonlinear
without assuming specific models.

Here, we discuss a sequential prediction framework

that generalizes Granger’s mathematical formulation of

causality beyond autoregressive models to any modality. At

its core, Granger’s statement revolves around prediction.

We test causal interaction from a neural process X to Y by

comparing the performance of two predictors. One

predictor specifies a prediction on the future of Y, Yt,
given the past of all processes up to time t� 1, Ht�1. The

other predictor specifies a prediction on the future of Y, Yt,

given the past of all processes excluding the process X up to

time t� 1,Ht�1
X . We then compare the performance of the

two predictors in terms of their loss, accumulated sequen-

tially over time. On average, the predictor with less

information incurs more loss. If their average accumulated

losses are about the same, then we declare that X does not

cause Y; otherwise, X causes Y. Here, we denote

yt ¼D fy1; . . . ; ytg. Causal inference based on reduction in

loss, accumulated over time, is assessed as follows:

Causal Inference Based on Reduction in Loss

1) Assign Ht�1 as the past of all processes up to time

t� 1, and Ht�1
X as the past of all processes

excluding process X, up to time t� 1. For

example, for three processes X; Y, and Z, Ht�1 ¼
ðxt�1; yt�1; zt�1Þ and Ht�1

X ¼ ðyt�1; zt�1Þ.
2) In parallel, update the two predictors: pt ¼

PYtjHt�1ðytjHt�1Þ and ~pt ¼ ~PYtjHt�1
X
ðytjHt�1

X Þ.
3) yt is revealed. The two predictors incur losses

given by: lðpt; ytÞ, lð~pt; ytÞ.
4) Quantify the reduction in loss: rt ¼ lð~pt; ytÞ�

lðpt; ytÞ.
5) Let t ¼ tþ 1; go to 1.

From this, we can quantify the average reduction in

loss as our measure of causality

CX!Y ¼
1

T
E
XT

t¼1

rt

" #
: (2)

If CX!Y is close to zero, it indicates that the past values of

neural process X contain no significant information that

would assist in predicting the activity of neural process Y.

Thus, X has no causal influence on Y. On the contrary, if

the reduction in loss is significantly greater than zero, it

indicates that the past values of X contain information that
improves the ability to predict the neural process Y. Thus,

X causes Y in the sense of Granger. We can perform this

test for every possible directed edge for a collection of N
recorded time series.

Using the log loss function, the causality measure CX!Y

in (2) becomes

CX!Y ¼
1

T

XT

t¼1

E log
PYtjHt�1ðytjHt�1Þ
~PYtjHt�1

X
ðytjHt�1

X Þ

" #
(3)

¼ 1

T

XT

t¼1

DðPYtjHt�1k~PYtjHt�1
X

�
¼ 1

T

XT

t¼1

I Xt�1; YtjHt�1
X

� �
¼D 1

T
IðX ! YjHÞ (4)

Fig. 1. Inference engine that uncovers the directed functional structure

in the joint statistics underlying a collection of time series

pertaining to neural recordings.
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where DðPkQÞ is the Kullback–Leibler (KL) divergence
and IðA; BjCÞ is the conditional mutual information

between A and B given C [26]. Equation (4) turns out to

be the causally conditioned directed information [19],

[27], [28], with interpretations in control theory and

feedback information theory. It has the key property that it

is nonnegative, and zero if and only if the future of Y is

independent of the past of X given knowledge of all

processes excluding X. Note that, in general, unlike mutual
information, directed information from X to Y is not

necessarily equivalent to the directed information from Y
to X, thus it provides the desirable property of direction of

information flow across time. Moreover, this framework

for assessing causal interaction is particularly desirable for

neural data analysis because it works on arbitrary

modalities and statistical models [19].

Recently, there have been works on the conceptual and
theoretical link between Granger causality, conditional

independence, and directed information theory [29]–[38].

They justified using directed information conceptually,

motivated by equivalence of Granger causality and directed

information in the case of jointly Gaussian processes [31],

but did not identify properties of the graph. Independent-

ly, the relationship between Granger causality and transfer

entropy has been shown in [35] and [36]. Directed
information is the time average of transfer entropy.

Transfer entropy was proposed by Schreiber [37], inde-

pendently of directed information. Granger’s original

formulation of causality based on the linear regression

modeling of stochastic processes is also a special case of

this framework, when the distributions of neural responses

are assumed to be Gaussian [38].

C. Robust Approximations for Massive Neural
Data Analysis

Accessing the directed network of multiple neural

processes can yield insight into the structures of a neural

system and their functions. A large-scale network during

motor maintenance behavior in awake monkeys, for

instance, has been demonstrated using the causal network

analysis [18], and strong local neighborhood structure
between retinal ganglion cells has been found by modeling

the interactions of these cells [39]. However, as the

number of ensemble recordings grows, analyzing the high-

dimensional neural data becomes very challenging from

both visualization and computational perspectives, even

with directed network analysis.

Several methods have been developed that can reduce

the complexity [40], [41]. They use simpler models but
assume that the simultaneously recorded high-dimensional

neural data are the product of a latent, low-dimensional

state space.

Within the context of directed network analysis, an

approach was recently demonstrated to approximate the

directed information flow among N processes (N nodes

and N2 possible edges) with a directed tree, containing N

nodes and N � 1 possible edges [42]. Fig. 2 illustrates an

example of a directed tree with six processes.

Each tree represents different dynamics. For example,

suppose Y depends on X and Z, as described by

Pðytjxt�1; yt�1; zt�1Þ. In a directed tree, Y can only have

one parent. If X is chosen, then the tree only represents the
dynamics described by Pðytjxt�1; yt�1Þ. We measure how

‘‘close’’ this is to the original with the KL divergence,

DðPðytjxt�1; yt�1; zt�1ÞkPðytjxt�1; yt�1ÞÞ.
Let T C denote the set of all directed trees. Consider

any particular tree T. Let bPT denote the distribution

corresponding to T. The goal is to find the tree T that best

represents the full dynamics, arg minT2T C
DðPkbPTÞ, where

P is the original distribution. The best tree is the one that
maximizes a sum of directed informations along the edges

ðX; YÞ of the tree [42]

arg min
T2T m

DðPkbPTÞ ¼ arg max
T2T C

X
ðX;YÞ2T

IðX ! YÞ: (5)

This can be solved by finding the directed information

IðX ! YÞ for each pair of processes, and then using an
efficient maximum-weight directed spanning tree algo-

rithm, such as Edmunds’ algorithm [43] with a complexity

of OðN2Þ, to find the best tree. Note that only N2

calculations of directed informations are needed. Each

calculation only uses statistics among two random

processes, for which statistically consistent algorithms

exist under appropriate assumptions [19], [44].

This result is analogous to that of Chow and Liu [45] for
networks of random variables.

Table 2 provides a concise explanation of the reduction

in complexity for both visualization and computation. It

Fig. 2. Diagram of a tree generative model graph representing a

sparse, approximate joint distribution.

Table 2 Visualization and Inference Complexity of Aforementioned

Approaches in Terms of Number N of Processes and Number T

of Time Points
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includes traditional Markov network graphical models,
directed information graphs, and tree approximations. The

inference complexity of traditional graphical models is

deemed ‘‘hard’’ because joint statistics on all processes,

across all times, is required. Instead, directed information

graphs simply calculate causally conditioned directed

information, which are moving averages of log likelihoods

but nonetheless require joint statistics among all random

processes. Last, the tree directed approximations only
require pairwise statistics and have OðN2Þ total complexity.

Directed trees by definition do not have feedback,

which is undoubtedly important in neuroscience. One

purpose of a tree approximation of the network estimate is

to identify the main path of the information flow in the

network. For some neuroscience data sets such as those

described in Section IV-B, the scientific hypothesis to be

tested involves understanding the main direction of
information in the network. As such, this analysis method

can efficiently elucidate some phenomena of interest, but

generally speaking should be used with caution.

D. Dynamics and Nonstationarity: Minimax Regret
The anatomical connectivity between different regions

or different neurons in a given brain region remain

relatively stable over long periods of time, but the
ensemble activity we can now record exhibits dynamic,

changing, interactive relationships over faster time scales.

So far, most existing methods for analyzing neural data are

developed based on stationary joint statistics on the data

generating mechanism. Thus, taking time averages as done

before can blur out the dynamic, nonstationary aspects of

brain function we may want to elucidate. This has typi-

cally been addressed in an ad hoc manner, for example, by
using moving windows, whose length choice suffers from

the bias–variance tradeoff [3]. This method did not track

the evolution in a fine time scale, and assumed that the

changing timings are the same for between all pairs of

neurons. Attempting to develop maximum-likelihood style

approaches for time-varying parametric models is destined

to fail, because the number of parameters grows with the

number of time points T.
Here, we consider an approach from the theory of

sequential prediction to build time-varying statistical

models by combining reference forecasters, called experts
[9]. The experts can be interpreted in different ways

depending on various applications. It is possible to regard

an expert as a black box of unknown computational power,

possibly with access to private side information. In some

cases, the class of experts can be viewed as a parametric
statistical model where each expert in the class is uniquely

specified by a set of parameters and represents an optimal

predictor for a given state of nature. For example, consider

a family of models of binary activity. One expert

corresponds to a Bernoulli probability model with

probability of heads 0.5, while another expert corresponds

to a probability model of heads probability being 0.1. In

general, there can be a continuum of experts, in this case,
being one-to-one correspondence with the ½0; 1� line. In

our framework, each expert makes a prediction on a next

outcome based upon all information it has had in the past.

The predictions of each expert, and their performance in

the past, are available to us. It is our job to combine these

experts’ advice and their past performances to provide one

prediction that performs as best as possible on the new

outcome that has not yet been revealed. A schematic
diagram of sequential prediction with experts’ advice is

illustrated in Fig. 3. As shown in the figure, we will then

design our own predictive strategy based on these experts’

advice so that the cumulative loss will be close to that of

the best expert in the class, in hindsight.

Let us denote the class of experts as E where each

expert e 2 E provides a prediction et 2 D at each time t
where D represents the set of possible decisions. We make
the predictions of neural data in a sequential manner, and

the performance of this sequential prediction is compared

to that of a class of experts. The aforementioned

Fig. 3. Sequential prediction with expert advice. (a) Our own predictive

strategy that is designed based on experts’ advice. Initially, experts’

advice is combined with equal weights. (b) Optimal predictive

strategy. For each round, we strategize how to combine these advice

for experts with uneven weights so that the cumulative loss is

getting close to that of the best expert in the class.
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framework of prediction with loss can be naturally viewed
as the following repeated game between our own predictor

pt and environment to set the true outcomes yt.

Sequential Prediction with Expert Advice

For each round t ¼ 1; 2; . . . ; T
1) the environment chooses the next outcome yt 2 Y

and expert advice et 2 D; the expert advice is

revealed to the predictor;
2) the predictor p has yt�1 at its disposal and chooses

a prediction pt 2 D;

3) the environment reveals yt 2 Y;

4) the predictor p incurs loss lðpt; ytÞ, and expert

e 2 E incurs loss lðet; ytÞ.

The accumulated loss for predictor p (or expert e) on

outcome sequence yT is defined as

LTðp; yTÞ ¼
XT

t¼1

lðpt; ytÞ: (6)

The difference between the accumulated loss of our
predictor p and that of an expert e is called ‘‘regret’’ for

outcome sequence yT , which is given by

RTðp; e; yTÞ ¼ LTðp; yTÞ � LTðe; yTÞ: (7)

This measures how much our predictor laments, in

hindsight, not having followed the advice of this particular
expert [9]. It is our goal to design predictor p such that its

regret is close to that of the best expert in hindsight. By

understanding the worst case regret over all experts and all

possible sequences, we desire to make a ‘‘good’’ predictor

to minimize the worst case regret

RTðp;EÞ ¼
D

sup
yT

sup
e2E

RTðp; e; yTÞ: (8)

This ‘‘minimax’’ regret in (8) measures the best possible

performance guarantee one can have for a predictive

algorithm that holds for all possible classes of experts in E
and all possible sequences of outcomes of length T. It
provides us a nonprobabilistic guarantee on robust

performance. This has been used in the classical statistics

literature for development of probably good inference

methods [9] and in the information theory literature for

development of probably good model selection procedures

[46], [59]. The minimizer of (8) is termed the normalized

maximum-likelihood estimator (NMLE), but its practical

use is prohibitive because it requires solving an optimiza-
tion problem whose complexity increases exponentially

with time and does not have the prequential property [9],

[47]. In Section III, we will develop efficient methods to

asymptotically attain the minimax regret.

III . OPTIMAL TRANSPORT AND
BAYESIAN INFERENCE

Neuroscience data are increasingly being recorded from

multiple modalities, which can operate on different spatial

or temporal scales. For example, electroencephalography
(EEG) and functional magnetic resonance imaging (fMRI)

signals can be simultaneously recorded where the former

has high temporal resolution but low spatial resolution, but

the latter has the opposite. Although the objective of most

current neurophysiological experiments is to relate rele-

vant biological stimuli to multivariate neural data, the

ability to simultaneously record multiple forms of activity

such as neurophysiological, functional imaging, and
behavioral data is increasing. Developing appropriate

statistical methods to analyze simultaneous multimodality

recordings will require innovative approaches to integrate

information properly across the different temporal and

spatial scales of various data sources. One natural way to

perform this is from the perspective of Bayesian inference

where likelihoods can link any specific modality to a latent

mechanism of interest, and from which we can infer
information across all modalities. The use of Bayesian

inference methods within the context of learning, across

heterogeneous modalities and times scales, for example,

was accomplished within the context of learning in

monkeys [48].

Generally speaking, Bayesian inference provides a

foundation for learning from noisy and incomplete neural

data; for instance, it offers a general approach to
estimating the representation of biological information in

neural observations [49]. However, when the latent

variable � is in a continuum, we have Bayes’ rule as

fQjYð�jyÞ ¼
fQð�ÞfYjQðyj�Þ

�y
(9)

where �y ¼D
R

Q fQðuÞfYjQðyjuÞdu. Computing �y or drawing

samples from the posterior is one of the central challenges

in Bayesian inference. The typical approach for solving this
problem is the use of Markov chain Monte Carlo (MCMC)

methods, where samples are drawn from a Markov chain

whose invariant distribution is that of the posterior [50].

Despite popularity of MCMC method, when samples are

generated from a Markov chain, they are statistically

dependent, leading to smaller effective sample sizes. More

importantly, the number of iterations of running the chain
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that is necessary for the system to converge is not well
understood.

An alternative approach for Bayesian inference to

avoid Markov chain simulation was recently proposed in

[51], which is inspired by optimal transport theory [10].

The main idea of this approach is to find a map that

transforms a random variable distributed according to the

prior to a random variable distributed according to the

posterior. However, in general, solving an optimal
transport problem is difficult. Recently, we showed that

for a large class of Bayesian inference problems (e.g., with

log-concave likelihoods and priors, which can model the

various kinds of neural data), one class of variational

problems over maps leads to an efficient (e.g., convex)

optimization problem that only requires drawing inde-

pendent, identically distributed (i.i.d.) samples from the

prior [52]. Because there is a rich theory of convergence
for i.i.d. time series and the prior is typically easy to

sample from, and because there are many methods to

solve convex optimization problems [53], with decades-

old convergence criteria, this provides an alternative

approach for solving these classes of log-concave Bayesian

inference problems.

A. Jacobian Equation and Optimal Transport
We now provide some notation relevant to the

development of our efficient Bayesian inference algo-

rithms where the latent variable is in a continuum.

Consider a set W � Rd for some d, and define the space of

all probability measures on W as PðWÞ. Given a P 2 PðWÞ
and a Q 2 PðWÞ, we seek a map S : W!W to push
forward P to Q (denoted as S#P ¼ Q) if a random variable
W distributed with P results in Z ¼D SðWÞ distributed with

Q. We say that S : W!W is a ‘‘diffeomorphism’’ on W if S
is invertible and both S and S�1 are differentiable. For any

such diffeomorphism S assuming that p ðqÞ is the density of

P ðQÞ, then we have from the Jacobian equation that

pðuÞ ¼ q SðuÞð Þ det JSðuÞj j (10)

where JS is the Jacobian of the map S. From the theory of

optimal transport [10], for any p and q, there always exists
a monotonic map S [for which det JSðuÞ > 0] such that

S#P ¼ Q. Thus, without loss of generality, by defining the

set of monotonic diffeomorphisms on W as SðWÞ, we have

that for any such S 2 SðWÞ

pðuÞ ¼ q SðuÞð Þ det JSðuÞ: (11)

Within the context of Bayesian inference, P represents

the given prior PQ and Q represents the posterior PQjY¼y we

are trying to develop. We seek a monotone diffeomorph-

ism map S�y for which S�y #
PQ ¼ PQjY¼y to push forward the

prior distribution PQ to the posterior distribution PQjY¼y,

giving rise to the following equation:

fQð�Þ ¼ fQjY¼y S�y ð�Þ
� �

det JS�y ð�Þ
� �

(12)

¼
fYjQ yjS�y ð�Þ
� �

fQ S�y ð�Þ
� �

�y
det JS�y ð�Þ
� �

(13)

where (13) follows from (9). Then, for an arbitrary

monotone diffeomorphism Sy 2 SðWÞ instead of S�y , a new

operator T can be defined as

TðSy; �Þ ¼D log fYjQ yjSyð�Þ
� �

þ log fQ Syð�Þ
� �

þ log det JSyð�Þ
� �

� log fQð�Þ: (14)

When we consider any other diffeomorphism Sy instead of
S�y in (13), we note that either Sy#

PQ ¼ ~PQjY¼y where
~PQjY¼y need not equal the true posterior PQjY¼y, or,

equivalently, the inverse S�1
y satisfies S�1

y #
PQjY¼y ¼ ~PQ

where ~PQ need not equal the true posterior PQ. This is

shown in Fig. 4. For any diffeomorphism Sy, the KL

divergence is given by

DðPQk~PQÞ ¼
D
Z
�2Q

fQð�Þ log
fQð�Þ
~f Qð�Þ

d�

¼ log�y �
Z
�2Q

fQð�ÞTðSy; �Þd�:

The KL divergence is nonnegative and clearly there exists a

monotone diffeomorphism S�y satisfying S�y#PQ ¼ PQjY¼y,

for which the KL divergence is exactly zero. Thus, an
equivalent problem to solve is to minimize a KL

divergence, or equivalently, maximize the expectation of

the T operator

(P1) S�y ¼ arg min
Sy2SðWÞ

DðPQk~PQÞ (15)

¼ arg max
Sy2SðWÞ

Z
�2Q

fQð�ÞTðSy; �Þd�: (16)

The optimization problem to find a map Sy is a search

over an infinite-dimensional space of monotone diffeo-

morphisms. From here, we can transform the problem into

searching for coefficients of an orthogonal basis of

functions using the Wiener–Askey polynomial expansion

[54]–[56]. For example, if Q ¼ ½�1; 1� and PQ is uniformly
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distributed, then �ðjÞð�Þ are the Legendre polynomials. If

Q ¼ R and PQ is Gaussian, then �ðjÞð�Þ are the Hermite

polynomials. Rather than optimizing over functions, we

can perform functional analysis and approximate any
S 2 SðQÞ as a linear combination of basis functions

Sð�Þ ¼
X
j2J

gj�
ðjÞð�Þ (17)

where �ðjÞð�Þ 2 R are d-variate polynomials and gj 2 Rd

are the expansion coefficients, with d being the dimension

of W. By assembling the set fgjgj2J into a matrix

F ¼ ½g1; . . . ;gK � of size d� K where K ¼ jJ j, and every
p o l y n o m i a l f�ðjÞð�Þgj2J i n t o a c o l u m n v e c t o r

Að�Þ ¼ ½�ð1Þð�Þ; . . . ; �ðKÞð�Þ�T of size K � 1, the map is

then represented as

Sð�Þ ¼ FAð�Þ: (18)

Under the basis expansion in (18), we have JSð�Þ ¼
FDQAð�Þ of size d� d, and we define the analogous T
operator for the coefficients of the basis as

~TðF; �Þ ¼D log fYjQ yjFAð�Þð Þ þ log fQ FAð�Þð Þ
þ log det FJAð�Þð Þ � log fQð�Þ: (19)

We now define a problem where we approximate an

expectation of ~TðF; �Þ by a weighted sum of i.i.d. samples,

and we approximate the set of all functions using a
truncated polynomial chaos expansion [54]–[56]

(P2) F� ¼ arg max
F2Rd�K :FJAðQ1Þ�0;...;FJAðQNÞ�0

VðFÞ

VðFÞ ¼D 1

N

XN

i¼1

~TðF;QiÞ (20)

where Q1;Q2; . . . ;QN are drawn i.i.d. from PQ. This leads

to the following theorem [52]:

Theorem III.1: Problem (P2) solves the Bayesian

inference problem, and if fQð�Þ is log-concave and
fYjQðyj�Þ is log-concave in �, then this problem is convex

and thus efficiently solvable.

This result is dependent upon log-concavity of the prior

and likelihood, but for most neural data sets, this

assumption holds: Many common statistical models in

neural data sets satisfy the prior and likelihood assump-

tions in Theorem III.1. For example, Gaussian/Laplace/

uniform priors on � [57] and generalized linear model
(GLM) likelihood functions for fðyj�Þ [58], all fall within

the class of log-concave distributions.

Fig. 5 illustrates an example of Bayesian inference

using an optimal map in a 2-D compact space. Each color

of color maps represents a specific set of parameters in the

2-D space. That is, each color uniquely specifies a

particular expert. Initially we assume a uniform distribu-

tion over these parameters as shown in the top plot of
Fig. 5(a). All the parameters (colors) are uniformly

distributed in the 2-D compact space, as shown in

Fig. 5(b). The boxed-in region represents an area, which

shows the relatively high likelihood values given a next

outcome. The likelihood function is illustrated in the top

plot of Fig. 5(c). This likelihood function places more of its

mass over this area. Fig. 5(d) shows the ‘‘visual effect’’ of

the nonlinear mapping of the 2-D parameter space using a
designed optimal map. We can see a large increase in

resolution (i.e., an increase in probability) over the green/

yellow/orange space of interest at the expense of the

remaining parameter space. Note, however, that none of

the colors have been removed.

B. Relation to Minimax Sequential Prediction
Bayesian inference plays an important role in designing

mixture forecaster with the experts’ advice in Section II-D.

One implementable approach pertaining to a sublinear

minimax regret is considered. A natural predicting strategy

is based on computing a weighted average of experts’
predictions, as illustrated in Fig. 3(b). Since our goal is to

minimize the regret, it is reasonable to decide the weights

according to the regret up to time t� 1. For example, if the

regret is large, then we give more weight to the

corresponding expert, and vice versa. In other words, we

weight more those experts whose cumulative loss is small,

and thus we regard the weight as an arbitrary function of

Fig. 4. Bayesian inference with optimal maps. We design a map that

pushes forward the prior distribution to the posterior distribution.

We begin with a prior distribution PQ. Upon an observation Y ¼ y, it is

our objective to find PQjY¼y . Up front, because of the difficulty in

computing �y , PQjY¼y is unknown; but we know it exists. A ‘‘desirable’’

diffeomorphism S�y pushes the prior PQ to the posterior PQjY¼y ;

equivalently, S�y
�1 pushes the posterior PQjY¼y to the prior PQ . An

arbitrary diffeomorphism Sy will push PQ to some distribution ~PQjY¼y
that is not necessarily ‘PQjY¼y ; equivalently, Sy�1 pushes the posterior

PQjY¼y to some distribution ~PQ that is not necessarily PQ.
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the experts’ loss. This leads to the class of mixture
forecasters that are more easily implementable while still

satisfying sublinear regret.
Suppose that each expert e is uniquely specified by a

parameter � such as eðytjyt�1; �Þ. We also define for

notational convenience: lðe; yt�1Þ ¼D lð�; yt�1Þ. We define a

weight w�;t for each expert e at time t as

w�;t ¼
e��Lt�1ð�;yt�1ÞR

� e��Lt�1ð�;yt�1Þd�
(21)

where � is a positive number. So the weight of an expert e
depends on its past performance Lt�1ð�; yt�1Þ, and implies
we listen more to the advice of the experts, whose recent

loss functions are relatively small.

To define the mixture forecaster, a nonnegative

number �0ð�Þ � 0 is assigned to each expert such thatR
� �0ð�Þd� ¼ 1 as a prior information. Then, the mixture

forecaster becomes a weighted average of experts’ predic-

tions, which is represented by

p�Eðytjyt�1Þ ¼
Z
�

�0ð�Þeðytjyt�1; �Þw�;t�1d�: (22)

When we select � ¼ 1, it is expressed by

p�Eðytjyt�1Þ¼
R
� �0ð�Þeðytjyt�1; �Þeðyt�1j�Þd�R

� �0ð�Þeðyt�1j�Þd� (23)

¼
Z
�

�t�1ð�Þeðytjyt�1; �Þd� (24)

where

�t�1ð�Þ ¼
�0ð�Þeðyt�1j�ÞR

� �0ð�Þeðyt�1j�Þd� : (25)

The mixture forecaster in (24) builds a predictive
strategy as a weighted average of experts’ advice and each

weight at time t is determined by a posterior probability of

the expert given the observation up to time t� 1. It is a

natural way to combine the experts’ advice, since the

posterior distribution represents one’s state of knowledge

about each expert. It can also be calculated by an efficient

Bayesian inference method with optimal transport and

Fig. 5. Example of Bayesian inference with optimal maps in 2-D compact parameter space. (a) Uniform prior on the parameters in the space. The

red rectangular on top represents a uniform prior on the parameters. Different colors on bottom represent different values in the parameter

space, i.e., different experts. (b) Distribution of the parameters under the uniform prior. The boxed-in region represents an area of interest

given a next outcome. (c) More weights on the area with high likelihood values given the outcome. The 2-D distribution on top represents

the likelihood values given the next outcome. The parameters on the area with high likelihood values will be more weighted. (d) The effect of

the nonlinear optimal mapping on the parameter space.
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convex optimization, as described in Section III-A. Using
the law of conditional probability, it can be rewritten as

p�Eðytjyt�1Þ ¼ eðytjyt�1; �Þ�t�1ð�Þ
�tð�Þ

: (26)

The mixture forecaster in (26) is a ‘‘good’’ predictor

satisfying RTðp�E;EÞ ¼ oðTÞ. When we think of �0 as a prior
on E, then this is a Bayesian approach, and there is a

natural way to select the prior based on Jeffrey’s prior [59].

Under general conditions, Jeffrey’s prior, denoted as f �� ðuÞ,
is the unique prior, for which minimax optimality holds

[47]. It is given by

f�� ðuÞ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det JðuÞð Þ

p
(27)

where JðuÞ is Fisher information with respect to the

likelihood function [15]. Jeffrey’s prior is log-concave for

the point process GLM of neural spiking activity. Thus,

performing inference on this class of models with minimax

optimal regret is efficient.
With these dynamic, time-varying predictions from

expert advice, we separately compute the sequential

predictor p�EðytjHt�1Þ and p�EðytjHt�1
X Þ and then compute

CX!YðtÞ ¼D D p�EðytjHt�1Þkp�E ytjHt�1
X

� �� �
(28)

at time t. This provides a time-varying measure of causality
where each individual predictor at time t is computed

efficiently with our Bayesian inference methodology and

minimax integration of each expert’s advice.

IV. APPLICATIONS

In this section, we demonstrate the application of the

aforementioned methodologies to the analysis of simulta-

neously recorded spiking activity from multiple neurons.

Methods based on reduction in loss function were used to

infer the causal network of ensemble neural spiking

activity using a point process model. This approach was
tested first on simulated data, and subsequently applied to

neural activity recorded from the primary motor cortex

(M1) of a monkey. Some examples of the approximate

estimated network topologies with reduced complexity are

shown. Moreover, a time-varying causal inference exten-

sion of our methodology was performed on the same data

using the sequential prediction framework.

A. Network Analysis of Ensemble Neural
Spiking Activity

A general framework for analyzing the causality

network between multiple neural processes was intro-

duced based on reduction in loss function in Section II-B.

In this section, we will show how this framework is applied

to estimate the causality network between multiple neural

spike trains using the point process models [19], [20]. The

discrete, all-or-nothing nature of a sequence of action
potentials together with their stochastic structure suggests

that neural spike trains may be regarded as point processes

[60]–[62]. Let Ni;t denote the sample path that counts the

number of spikes of neuron i in the time interval ð0; t� for

t 2 ð0; T� for i ¼ 1; . . . ;M recorded neurons. A point

process model of a spike train for neuron i can be

completely characterized by its conditional intensity

function (CIF), �iðtjHtÞ, defined as

�iðtjHtÞ ¼ lim
D!0

Pr½Ni;tþD � Ni;t ¼ 1jHt�
D

(29)

where Ht denotes the spiking history of all the neurons in

the ensemble up to time t [63]. The CIF represents the

instantaneous firing probability and serves as a fundamen-

tal block for constructing the likelihoods and probability

distributions for point process data. It is a history-

dependent function, and reduces to a Poisson process if

it is independent of the history. To simplify the notation
we denote �iðtjHtÞ as �iðtÞ. In the GLM framework to

model the relationship between the spiking activity and its

covariates (the spiking history) [64], the logarithm of the

CIF is modeled as a linear combination of the functions of

the covariates that describe the neural activity dependen-

cies, and thus is expressed as

log�iðtÞ ¼ �i;0 þ
XM

m¼1

�i;m 	 ht
m: (30)

Here, �i;0 relates to a background level of the activity of

neuron i, �i;m is a d-dimensional vector of parameters to

relate the past spiking of neuron m to the future spiking of

neuron i, and ht
m is a d-dimensional vector whose each

element represents the spikes in the spiking history of
neuron m up to time t. The ‘‘	’’ represents the dot product

between vectors.

To test the causal interaction from neuron j to i, we

developed two ‘‘predictors,’’ one class of point process

GLM models that PðNT
i Þ that has the past of all neurons as

the covariates for the CIF, and another class given by
~QðNT

i Þ that has the past of all except for neuron j. The point
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process likelihood is given, up to a normalization constant,
by [63]:

P NT
i

� �
¼ exp

ZT

0

log�iðtÞdNi;t �
ZT

0

�iðtÞdt:

8<:
9=;: (31)

Note that for PðNT
i Þ, �iðtÞ includes the past spiking of all

neurons. The other point process likelihood ~PðNT
i Þ is given

by the same equation (31), but with �iðtÞ replaced as ~�iðtÞ

log ~�iðtÞ ¼ ~�i;0 þ
XM

m6¼j
m¼1

~�i;m 	 ht
m (32)

which excludes the effect of the past spiking of neuron j.
Model parameters for PðNT

i ; �iÞ and for ~PðNT
i ; ~�iÞ were

fitted by maximum likelihood and then the causality

measure from j to i is defined using the expected value of

reduction in log loss functions, which is given by

Cj!i ¼
1

T
E log

P NT
i ; ��i

� �
~P NT

i ; ~�
�
i

� �
24 35 (33)

¼D P NT
i ; ��i

� �
k~P NT

i ; ~�
�
i

� �� �
: (34)

If the history spiking of neuron j helps predict the spiking
activity of neuron i, the directed information should be

greater than zero, and then we say that neuron j ‘‘Granger-

causes’’ i [65]. The equality of the causally conditioned

directed information holds when neuron j has no causal

influence on i. Excitatory and inhibitory influences from

neuron j to i are distinguished by the sign of
P

� �i;jð�Þ in

(30), which represents an averaged influence of the past

spiking of j on i.
The directed information measure Cj!i of (33) given by

the log-likelihood ratio provides an indication of the

relative strength of causal interaction, but little insight

into whether it is statistically significant. We use the

goodness-of-fit (GOF) statistics based on the log-likelihood

ratio test to address this issue. We denote the deviance

obtained using the model parameter ��i as D0, and the

deviance obtained using ~�
�
i as D1. The deviance difference

between two models is equivalent to two times log-

likelihood ratio given by DD ¼ D0� D1 ¼ 2Cj!i [66]. If

both models describe the data well, then the deviance

difference may be asymptotically described by DD 
 	2
d

where d is the difference in dimensionality of two models

[64], [66]. Thus, if the value of DD is consistent with the

	2
d distribution, the causal influence is not statistically

significant. On the contrary, if the value of DD is in the

critical region, i.e., greater than the upper tail

100ð1� 
Þ% of 	2
d where 
 determines false positive

rates, then the causal influence is determined as statisti-
cally significant. When we use the common statistical

thresholds to detect statistically significant causal interac-

tions between possibly many pairs of neurons, we will

suffer from unacceptably large false positives [67]. Here

we used a multiple-hypothesis testing error measure called

false discovery rate (FDR) to address the multiple

comparison problem [68].

In Fig. 6, the network estimates of cross-correlation-
based and causal inference methods were compared using

synthetically generated neural spike trains. Simulated

spike train data were generated based on the three-neuron

network of Fig. 6(a). The blue and red arrows represented

the inhibitory (causing a decrease in firing rate) and

excitatory (causing an increase in firing rate) interactions,

respectively. In the network, there were directed excit-

atory interactions from neuron 1 to 2 and 2 to 3 but there
was no excitatory interaction from 1 to 3. The neurons had

inhibitory effects on each other in a counterclockwise

direction. Specific point process models that were used to

generate spike trains based on this network were described

in the Simulation section of [20]. Examples of generated

neural spike trains during the first 5 s are illustrated in

Fig. 6(b). It is difficult to visually estimate the underlying

network between neurons from this raster plot. Fig. 6(c)
shows the estimated network using the cross-correlogram

Fig. 6. Comparison of network estimates using synthetic neural spike

trains. (a) Three-neuron network used to generate synthetic neural

spike trains. The blue and red arrows represent the inhibitory (causing

a decrease in firing rate) and excitatory (causing an increase in firing

rate) interactions, respectively. (b) Examples of generated neural spike

trains during the first 5 s. (c) Network estimate based on cross

correlation. (d) Network estimate based on causal inference.
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method. Note that this method determined a direct

excitatory connection from neuron 1 to 3 as well as direct

excitatory connections from 1 to 2 and 2 to 3. However,

truly, there was no direct excitatory connection from 1

to 3. It failed to detect all inhibitory interactions either.
Fig. 6(d) presents the estimated network using the

causal inference method. The estimated pattern matched

the original network exactly. This estimated network did

not show the excitatory connection from neuron 3 to 1

and succeeded in detecting all inhibitory interactions.

B. Directed Graph Representations of Ensemble
Neural Data

Multiple neural spike trains were simultaneously

recorded from the M1 of a monkey during a visuomotor

task. The monkey was trained to move a cursor on a

horizontal screen, aligned to the monkey’s hand, to the

position of a target. When the monkey successfully

reached the current target, a new target was displayed at

a random location within a workspace while the current

target disappeared. The monkey received a juice reward
after successfully acquiring five or seven consecutive

targets. Multiple single unit spiking activities from the M1

in a monkey were then recorded using a Utah microelec-

trode array. More details can be found in [69].

Fig. 7(a) depicts a directed network graph estimated by

applying the causal inference method in (34) to 37 high

firing neurons recorded in the M1 of the monkey [42]. The

blue arrow represents the dominant direction of the edges,
which is along the rostro–caudal axis (or anterior–

posterior axis). This axis is a line directed from the nose

to the tail. This direction is consistent with the beta wave

propagation direction of local field potentials in the motor

cortex, which researchers surmise mediates the informa-

tion transfer between different brain regions [70].

Fig. 7(b) illustrates that the directed tree approximation

methodology from Section II-C enabled more succinct
visualization with a directed tree approximation, and still

preserved relevant information for analysis of mechanistic

neurobiological phenomena.

C. Dynamic Analysis of Ensemble Neural Data
In this section, we demonstrate the use of minimax

time-varying causality measures from Section III-B eluci-

date how simultaneously recorded, motor cortical neurons

in nonhuman primates spatially coordinates their spike
activity during a visuomotor task using a two-link

exoskeleton manipulandum [71].

Fig. 8 shows the spatio–temporal patterns of network

connectivity during the visuomotor task obtained using

static and dynamic methods, respectively. The top plot

presents the network connectivity estimated using the

static causal inference method at different timings in

relation to the visual cue onset at 0 ms: time window 1 for
[�100, 50] ms, 2 for [50, 200] ms, and 3 for [200, 350] ms,

respectively [72]. As shown, most functional connectivity

was detected for the time window 2 compared to other two

intervals.

Fig. 8(b) shows the time-varying causal interactions

between some pairs of neurons at every 1 ms. It could track

time-varying causality networks and observe more inter-

actions after visual stimulus, which is consistent with the

Fig. 7. Graphical structures of statistically significant directed

information and its causal dependence tree approximation. The blue

arrow depicts a dominant orientation of the edges. The relative

positions of neurons correspond to those of the recording electrodes.

(a) Graphical structure of directed information values. (b) Causal

dependence tree approximation.

Fig. 8. Spatio–temporal patterns of network connectivity. The

dynamics of effective network in primary motor cortex of a monkey

using real neural spike train data is tracked. (a) Three snapshots of

time-varying networks are obtained every 150 ms using conventional

approach. Red arrow represents functional connections. The black

dots represent the relative positions of the electrodes on the array

where the neurons were detected. (b) The evolution of network

dynamics is tracked every 1 ms using the proposed approach. Red

vertical bar represents the onset time of visual cue.
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findings in Fig. 8(a). It also provided the timing
information on when the causal influences occurred and

disappeared in relation to visual cue onset. Fig. 8(b)

elucidates more details about the dynamic, nonstationary

causal influences, and is consistent with the static analysis

(for example, the directed edge 8! 1 is absent in the first

panel, and present in the next two).

V. CONCLUSION

We have developed a framework to develop scalable,

multimodal methods that address the key challenges that

are of increasing importance in neuroscience data analysis.

It was our attempt to balance having classical statistics,

information theory, and control theory underpinnings

with the agility to be applicable to specific neuroscientific

scenarios where physiological constraints can be embed-
ded within the framework.

Our approach based on general loss function perspec-

tive enables us to extend the analysis of neuroscience data

to high dimensionality, dynamics, and harness robustness

to uncertainty. The use of optimal transport theory

provided us a tool for efficiently solving Bayesian inference

problems with convex optimization, which by itself is of

importance in many statistical analysis settings, but more
specifically, enables our ability to develop robust methods

for dynamic analysis of ensemble neural processes.

Although our examples were specific to causal inference

for ensemble neural spiking activity, we note that our

general purpose exposition elucidates how it can be
applicable more generally.

In the future, we believe that uncertainty due to large

dynamic data sets will lead to new theoretical statistics and

algorithms that are specifically tailored to these massive,

dynamic data sets. What will be important is a balance

developing theoretical frameworks that have a ‘‘forest’’

perspective and have common underpinnings, with having

the features and extensibility to be applicable to neuro-
physiology of interest. In addition, we believe that the

uncertainty due to these massive data sets will lead to the

need for novel methods of performing sequential exper-

imental design: providing canonical frameworks to extract

information from experiments, characterize uncertainty,

and if necessary provide suggestions on subsequent

interventional experiments to refine uncertainty as effi-

ciently as possible. There is reason to suggest that newly
developed principles and algorithms that lie at the

intersection of 1) sequential transmission of a message

point in a continuum over a noisy channel with feedback

[73]–[75] and 2) ‘‘observability’’ and ‘‘filter stability’’ in

stochastic systems [76]–[79] can play an important role in

this setting. h
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