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Abstract—Objective: Although the importance of sleep
is increasingly recognized, the lack of robust and efficient
algorithms hinders scalable sleep assessment in healthy
persons and those with sleep disorders. Polysomnogra-
phy (PSG) and visual/manual scoring remain the gold stan-
dard in sleep evaluation, but more efficient/automated sys-
tems are needed. Most previous works have demonstrated
algorithms in high agreement with the gold standard in
healthy/normal (HN) individuals—not those with sleep dis-
orders. Methods: This paper presents a statistical frame-
work that automatically estimates whole-night sleep archi-
tecture in patients with obstructive sleep apnea (OSA)—the
most common sleep disorder. Single-channel frontal elec-
troencephalography was extracted from 65 HN/OSA sleep
studies, and decomposed into 11 spectral features in 60 903
30 s sleep epochs. The algorithm leveraged kernel density
estimation to generate stage-specific likelihoods, and a 5-
state hidden Markov model to estimate per-night sleep ar-
chitecture. Results: Comparisons to full PSG expert scoring
revealed the algorithm was in fair agreement with the gold
standard (median Cohen’s kappa = 0.53). Further, analy-
sis revealed modest decreases in median scoring agree-
ment as OSA severity increased from HN (kappa = 0.63) to
severe (kappa = 0.47). A separate implementation on HN
data from the Physionet Sleep-EDF Database resulted in
a median kappa = 0.65, further indicating the algorithm’s
broad applicability. Conclusion: Results of this work indi-
cate the proposed single-channel framework can emulate
expert-level scoring of sleep architecture in OSA. Signifi-
cance: Algorithms constructed to more accurately model
physiological variability during sleep may help advance au-
tomated sleep assessment, for practical and general use in
sleep medicine.

Index Terms—Density estimation, electroencephalogra-
phy (EEG), hidden Markov model, obstructive sleep apnea
(OSA), sleep scoring.

Manuscript received January 31, 2017; revised April 5, 2017 and May
3, 2017; accepted May 3, 2017. Date of publication May 8, 2017; date of
current version May 18, 2018. (Corresponding author: Todd Coleman.)

D. Y. Kang is with the Department of Bioengineering, University of
California.

P. N. DeYoung, A. Malhotra, and R. L. Owens are with the Division of
Pulmonary, Critical Care & Sleep Medicine, University of California.

T. P. Coleman is with the Department of Bioengineering, University of
California, San Diego, CA 92093 USA (e-mail: tpcoleman@ucsd.edu).

Digital Object Identifier 10.1109/TBME.2017.2702123

I. INTRODUCTION

S LEEP, like eating and breathing, is an essential part of the
daily life cycle. Although the process of sleep is not fully

understood, it has been shown to play a vital role in immune, car-
diovascular, and neurocognitive function [1]. Despite its great
importance, nearly 40% of US adults experience problems with
sleep ranging from insufficient total sleep time, trouble initiat-
ing or maintaining sleep (insomnia), circadian rhythm disorders,
sleep-related movement disorders, and sleep-related breathing
disorders such as obstructive sleep apnea (OSA) [2]. All of the
above have been shown to take a toll on the affected individual
physically, mentally, financially, and/or socially.

Sleep disorders can be diagnosed by an overnight polysomno-
gram (PSG), which utilizes multiple sensing modalities to mea-
sure biophysiological signals, including electroencephalogram
(EEG), electrooculogram (EOG), and respiratory rate and flow
[2]. Although considered the “gold standard,” there are multiple
reasons that hinder more widespread PSG use. First, the cumber-
some nature of the equipment interferes with sleep. Second, both
the equipment, and the cost/time of a registered polysomnog-
raphy technician (RPSGT) who performs sleep scoring visu-
ally according to standard rules, are expensive. Third, clinical
scoring of sleep remains a mundane process with considerable
inter-rater variability. To maintain a standard level of clinical
sleep scoring, technicians/physicians adhere to rules delineated
by Rechtschaffen and Kales (R&K) and the American Academy
of Sleep Medicine (AASM), which are designed to visually cat-
egorize any epoch of sleep into one of five clinically-recognized
sleep stages (Wake, N1, N2, N3, REM) [3]–[5]. Despite stan-
dardization efforts, the mean inter-rater agreement between ex-
perts scoring sleep in OSA is only 71% [6]. For all these reasons,
relatively few sleep studies are performed. A robust, yet cost-
effective and minimally invasive system to accurately measure
sleep would be valuable to better understand sleep in a research
and clinical context.

In an attempt to remedy the problems of manual sleep scoring,
many in the literature have proposed machine learning and data
science techniques for facilitating automated scoring of sleep.
Such studies have employed algorithms such as decision trees
[7]–[11], support vector machines [12]–[15], Markov models
[16]–[21], and neural networks [22], [23], which operate on
combinations of the traditional multi-channel PSG biometrics
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(e.g. EEG, EOG, Respiration) to provide algorithmic and auto-
mated assessment of a patient’s underlying sleep architecture.
To further simplify the current sleep scoring paradigm, many
have presented algorithms which perform on very few or even
single-channel recordings from varied modalities during sleep.
[10], [12], [13], [16], [22]–[28].

While progress has been made in the multi- and single-
channel domain of automated sleep scoring, agreement can be
modest – especially when the number of inputs is restricted.
Additionally, most of the prior work has focused on sleep in
healthy/normal (HN) subjects. These algorithms may not gen-
eralize to older individuals with chronic diseases, or those with
sleep disorders that cause sleep fragmentation, such as OSA.
Given that 25-50% of middle aged men and women may have
clinically relevant OSA [29], algorithms will need to be capable
of assessing sleep in a wide range of people. Additionally, to be
feasible, data will need to be derived from smaller systems and
a minimal number of channels.

Presented herein is an algorithmic approach to scoring sleep
using only a single frontal channel of EEG that is satisfactory for
automated sleep scoring within the context of OSA. The work
assesses time-frequency features of sleep EEG generated via the
multitaper spectrogram, and leverages a non-parametric likeli-
hood model for each of the five sleep stages via kernel density
estimation. Whole-night sleep architecture is estimated using
a five-state hidden Markov model and the Viterbi algorithm,
designed to operate on the multimodal likelihood structure of
different sleep stages. Results are presented for per-night and
per-epoch comparisons of algorithm vs. clinical scoring of the
sleep data in subjects who are HN as well as those with OSA.
The paper concludes with a discussion of the results and insight
into algorithm performance as a function of OSA severity.

II. METHODOLOGY

The present work includes a retrospective analysis of eighty
clinically-scored overnight PSG studies. The analysis was di-
vided into two parts: 1) An analysis of 65 datasets recorded at
UC San Diego for 15 HN (HNUCSD) and 50 OSA (OSAUCSD)
combined datasets, and 2) an analysis of 15 HN datasets de-
rived from the Physionet Sleep-EDF Database (HNPhysionet)
[30], [31].

The first sixty-five datasets were recorded on a 1401-plus
interface and Spike 2 software (Cambridge Electronic Design
Ltd., Cambridge, UK) at the UCSD Sleep Laboratory in San
Diego, California. Ethical approval for these studies was ob-
tained from the Human Research Protections Program at the
University of California, San Diego. Manual scoring of sleep
was performed by a RPSGT who had access to all modalities
included in the full PSG study to create the clinical hypnogram.
Fifty of the sixty-five UCSD datasets – comprising a subtotal
of 48,819 30s epochs of sleep – contained a mix of OSA sever-
ities based on the Apnea Hypopnea Index (AHI); 9 were mild
OSA (5 � AHI < 15 events/hour), 9 were moderate OSA (15
� AHI < 30 events/hour), and 32 were severe OSA (AHI � 30
events/hour). Another fifteen of the sixty-five datasets – com-
prising a subtotal of 12,084 30s epochs of sleep – contained HN

Fig. 1. Process workflow for automated assessment of single-channel
sleep EEG.

data (AHI � 5 events/hour). A total of 60,903 30s epochs were
used in the five-fold cross validation scoring analysis described
below.

For the purposes of this study, only a single EEG channel
(F3-A2) and the clinical hypnogram from the full HNUCSD and
OSAUCSD PSG studies were used for training and testing of the
automated algorithm. Fig. 1 illustrates the process workflow for
automated assessment of sleep via single-channel sleep EEG.
The algorithm classifies a continuous sleep EEG signal into a
5-stage sleep paradigm comprised of stages Wake (W), REM
(R), N1, N2, and N3. Python 3.4.4 and modified scripts from of
the scikit-learn library were used to create the algorithm.

The final fifteen of eighty datasets were derived from the
public Sleep-EDF Database [30], [31]. Specifically, EEG chan-
nel Fpz-Cz and clinical hypnograms were extracted from Sleep
Telemetry subjects 01-02, 04-14, and 16-17. All recordings were
obtained from subjects who had mild difficulty falling asleep,
but who were otherwise healthy. Processing of these datasets
followed suit with the HNUCSD and OSAUCSD data. Sleep ar-
chitecture estimation of the HNPhysionet sleep EEG datasets
was performed: 1) as a training-testing analysis entirely sepa-
rate from the UCSD-trained algorithm, and 2) by treating the
HNPhysionet data as test data against the UCSD-trained algo-
rithm. The former assessed the generalizability of the raw al-
gorithm, while the latter assessed generalizability of the F3-A2
training for classification of data derived from other EEG mon-
tages.

A. EEG Pre-Processing

Raw single channel F3-A2 EEG data were derived from full
PSG recordings in each of the 65 UCSD datasets. Single-channel
EEG was originally sampled at 125 Hz. Time series EEG data
was bandpass filtered between 0.1 Hz and 50 Hz using a zero-
phase forward-backward filter (Python, SciPy module). After
filtering, 30s epochs of sleep deemed as “NO STAGE” in the
clinical hypnogram were trimmed from both the hypnogram
and at corresponding points in the time series EEG data. “NO
STAGE” epochs only appeared at the beginning or end of clinical
hypnograms (accounting for subject wiring and disconnection
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during the overnight PSG), so EEG signal continuity during
epoch trimming was preserved.

Similarly, raw single channel Fpz-Cz EEG data were derived
from each of the 15 Physionet datasets. Single-channel EEG
was originally sampled at 100 Hz. The first 6-hours of each
HNPhysionet dataset was used, to ensure alignment between the
EEG data and corresponding hypnograms. In these hypnograms,
epochs “Stage 3” and “Stage 4” were replaced by “N3”, to be
consistent with the analysis of UCSD data.

B. Multitaper Spectral Estimation

Filtered EEG signals were spectrally decomposed using mul-
titaper (MT) spectral estimation. Like the conventional fast
Fourier transform (FFT), MT spectral estimation is an ap-
proach for constructing a time-frequency representation of non-
stationary time series signal. The advantage in using the MT
approach is in its use of orthonormal bases to serve as different,
uncorrelated “tapers” (hence multitaper), resulting in a modu-
lation of spectral estimation variance and bias [32]–[34]. MT
spectral estimation also boasts better frequency resolution than
some overlapping segment average approaches, such as Welch’s
method, for the same spectral leakage and variance estimators;
specifically, the resolution bandwidth for Welch’s method is
20-60% wider than the MT approach [35].

In essence, these multiple tapers are auxiliary to the stan-
dard FFT – each taper augments the FFT separately; the out-
puts of which are averaged across the total number of tapers
used to assemble the MT spectral estimate (1, 2). If x(n) is
the time series acquisition of sleep EEG with discrete samples
n = 0, 1, . . . , N , Δ represents the time interval between
recorded samples, and h

(i)
n denotes the set of orthonormal ta-

pers i = 1, 2, . . . , L at each time sample n, then the MT power
spectral density (PSD) estimate of the sleep EEG signal, S, was
given by
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For a mathematical narrative on MT spectral estimation,
Babadi and Brown provide a brief derivation of the MT method
and a comparison to other non-parametric spectral estimation
techniques [33]. In the proposed algorithm, EEG MT spectral
estimation was implemented in Python via the Spectrum module
available in the Python Package Index. A 30s non-overlapping
window and a suggested time half-bandwidth parameter NW =
3 were used, which resulted in L = (NW )(2) − 1 = 5 ta-
pers used for EEG MT spectral estimation. Discrete prolate
spheroidal sequences – or Slepian sequences – were used as
the orthonormal set of tapers. Finally, S was converted to a
log-PSD:

yt (f) = 20 ∗ log10S (f) (3)

TABLE I
SPECTRAL FEATURES USED FOR AUTOMATED CLASSIFICATION

OF SLEEP EEG

EEG Grequency
Bands/Features

Spectal Edges (Hz) Characteristic Sleep Stage

Broadband (broad) (0.1, 50) W (Motion Artifact)
Gamma (γ) (30, 50) W
Beta (β) (20, 30) W
Sigma (σ) (11, 14) N2 (Sleep Spindles)
Alpha
(α1 , α2 , α3 , α4 )

(7. 8), (8, 9), (9, 10), (10,
11)

W, N1, R

Theta (θ) (4, 7) N1, R (Sawtooth Waves)
Delta (δ) (1, 4) N3 (Slow Waves)
Very-Low Frequency
(Vlf)

(0.1, 1) W (Eye Blinks), R (Rapic Eye
Nivenebts), N2 (K-Complexes)

C. EEG Spectral Feature Extraction

Eleven spectral features were extracted on an epoch-by-epoch
basis from the log-MT spectral estimate of sleep EEG (Table I).
Frequency bands were chosen based on the previous literature
and guidance from the AASM Sleep Scoring Manual [4], [5],
[14], [20], [21], [23].

Of interest here was the decision to split the 7-11 Hz alpha
band into four equally spaced bands of 1 Hz bandwidth. This
was done to implement insight from the AASM Scoring Man-
ual, which states, “The alpha frequency in stage R often is 1-2
Hz slower than during wakefulness.” [4] Moreover, stages R
and N1 often resemble each other in low-amplitude, mixed fre-
quency activity. Therefore, a segmentation of the alpha band
was performed in an attempt to better discern these three often
misclassified stages.

In this work, the spectral feature yk
t represented a mean PSD

value for frequency band k during epoch t of an overnight
sleep EEG dataset. Denote the set of frequencies in frequency
band k as F (k) and the size of F (k) as |F (k) |. For in-
stance, for k = 0, the broad feature, we have that F (0) =
{0.1, 0.13, 0.16, . . . , 49.96, 49.99} and |F (0) | = 1663. For
k = 1, 2, . . . , 10, the frequency bands pertaining to F (k) are
given in Table I. For k = 0, 1, . . . , 10, each spectral feature
yk

t was calculated as follows:

yk
t =

⎧

⎪⎨

⎪⎩

1
|F (k ) |

∑

f∈F (k )

yt (f) , k = 0

1
|F (k ) |

∑

f∈F (k )

(

yt (f) − y0
t

)

, k = 1, 2, . . . , 10
(4)

One feature (k = 0, broadband EEG activity) was sim-
ply calculated as the mean PSD value between spectral edges
(0.1 Hz, 50 Hz). The remaining features were calculated as
relative spectral values – the difference between activity yk

t

in frequency band k (for k �= 0) and broadband activity y0
t .

The result is a feature vector yt ∈ R11 for each 30s clinically-
scored epoch of sleep. Over the entire UCSD dataset of 65
overnight studies, a total of 60,903 feature vectors were ex-
tracted. For Physionet data, a total of 10,800 feature vectors were
extracted.
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D. Kernel Density Estimation

Following epoch-by-epoch spectral feature extraction, the 65
nights of UCSD EEG feature vectors were equally segmented
into five separate folds (13 nights per fold: 3 HNUCSD and 10
OSAUCSD ), defining the 5-fold cross validation paradigm for
algorithm training and testing. Separately, the 15 nights of Phy-
sionet EEG feature vectors were equally segmented into five
separate folds (3 HNPhysionet datasets per fold). To construct
likelihood models for the feature vector yt, kernel density esti-
mation (KDE) was used to estimate the conditional probability
density function of observing EEG spectral features during a
specific stage of sleep.

KDE is a non-parametric method for estimating the proba-
bility density function of a continuous random variable. In this
formulation, we treat y

(i)
t = (y(i)

0 , y
(i)
1 , . . . , y

(i)
T ) as sample

vectors of dimension d = 11, drawn from the ith class of an
unknown density function f

(i)
Y (y). Generally speaking, it is dif-

ficult to determine the true distribution f
(i)
Y (y), so the following

kernel density estimate is used for approximation:

Ri (y) = f̂i,bi
(y) =

1
Tibi

Ti∑

t = 1

K

(

y − y
(i)
t

bi

)

(5)

where K is the kernel function – a d-dimensional, non-negative,
zero-mean function that integrates to one – and bi is a non-
negative, non-zero bandwidth parameter corresponding to the
ith class.

KDE is an attractive means to approximate the true topology
of a density. Its formulation is similar to that of a histogram of the
data, except that it performs a weighted average of many kernel
functions centered about each data point in the sample space. In
this way, Ri(y) leverages properties of the chosen kernel K to
enforce smoothness and continuity on the likelihood surface.

Moreover, unlike the multivariate Gaussian distribution,
Ri(y) can exhibit multimodal behavior, which is necessary for
encoding the variations in sleep architecture within and across
different patients, pathologies, and nights of sleep. For exam-
ple, the same stage of sleep could display variants of sleep
EEG activity based on age, sex, mental state, and overall health
[36]. Inter-individual variability in sleep and frequency of sleep
arousals increases as a function of age [37], [38], and is promi-
nent in diseases such as Parkinson’s Disease [39] and Rheuma-
toid Arthritis [40]. Moreover, such variations in regard to sleep
arousals and sleep continuity are mitigated by non-anatomical
features such as the arousal threshold, which is considered an
important contributor to the pathogenesis of sleep breathing
disorders such as OSA [41]. By utilizing a density estimation
approach, such as KDE, the goal is to model appropriately the
heterogeneity of sleep EEG activity within each stage of sleep
for varied classes of subjects and sleep physiology.

To construct the trained likelihood models for each
sleep stage class, KDE was implemented using the SciPy
stats.gaussian_kde package. An 11-dimensional N (0, 1) Gaus-
sian was used as the kernel function, and the optimal band-
width parameter bi was automatically determined for each sleep
stage i ∈ {W, R, N1, N2, N3} via Scott’s Rule [42]. For an

arbitrary fold of test data, Ri(y) was constructed with the
remaining 4 folds of data, so to train the likelihood models
with data separate from the testing set. The result per-fold is
a set of stage-specific conditional probability density functions
fY |X (y|x), where the sleep stage x probabilistically exhibits
EEG spectral activity y.

E. Hidden Markov Model

During each 30s epoch of sleep, a hidden stage of sleep emits
observable multivariate EEG spectral activity, giving an indi-
cation of the underlying sleep state. The observed EEG sig-
nal varies for different stages of sleep, as well as for different
nights of sleep and sleep pathologies. As sleep evolves over
the course of the night, discrete sleep stage transitions occur
between neighboring epochs, constrained by time-varying phys-
iological phenomena governing the sleep process. These transi-
tions are traditionally scored such that only the previous epoch
can influence the transition to another sleep stage in the current
epoch [4]. To encompass these properties of sleep and sleep
scoring, a state space model was utilized to represent per-night
sleep architecture as a 5-state, transition-constrained, Markov
chain. The likelihood model from Section III-D and the Markov
model jointly comprise a hidden Markov model (HMM) [43].

To construct sleep architecture as a HMM, the following vari-
ables and parameters are defined for epochs t = 0, 1, . . . , T
and sleep states i, j ∈ {W, R, N1, N2, N3}:
yt : Multivariate observation vector of single-channel EEG

spectral feature at time t.
xt : Hidden sleep state i at epoch t.
y0:T : (yo ,y1 , . . . ,yT −1 , yT ). Sequence of observed multi-

variate EEG spectral activity.
x0:T : (x0 , x1 , . . . , xT −1 , xT ). Sequence of hidden sleep

states composing whole-night sleep architecture.
πi : P (x0 = i). Initial Probability of sleep state i at time

t = 0.
Qi,j : P ( Xt = j| Xt−1 = i). Probability of transitioning

to state j at time t from state i at time t − 1.
Ri(y): P ( Y t = yt | Xt = i). Probability of observing EEG

features yt in sleep state i.
The goal is to generate a model for which x0:T can be es-

timated through a corresponding sequence of observed EEG
activity and prior knowledge of sleep stage transitioning con-
straints.

The HMM algorithm presented here was formulated using
a modified version of the framework available in the hmm-
learn python module. The modifications allowed for the use
of alternative likelihood models, which are framed as the set
of stage-specific KDE likelihoods Ri(y) generated during the
training phase. Since all PSG studies begin before the onset
of sleep, the only non-zero initial probability corresponds to
the sleep state i = W , such that the initial probability vector
πi = [1, 0, 0, 0, 0]. Values from the work of [44] provide insight
on the transition properties of sleep in clinical populations of
healthy subjects and OSA subjects. As the work was performed
for a 4-stage sleep model, OSA-specific values were extrapo-
lated to create a 5-state transition probability matrix for nights
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Fig. 2. Graphical model of HMM sleep state transitions with corre-
sponding probabilities. Absence of directed arrow indicates a transition
probability Qi,j = 0.00.

of sleep in OSA subjects; transition probabilities are graphically
illustrated in Fig. 2. To demonstrate the generalizability of the
presented algorithm, these values were fixed for all nights of
sleep in the analysis and were not adjusted when testing on un-
trained or new data. With that said, these transition probabilities
can be determined on a per-night and/or per-subject basis for
analyzing sleep architecture that departs from the typical HN or
OSA sleep structure shown here.

Following the HMM formulation, the Viterbi algorithm (VA)
was used to generate an algorithmic representation of the 5-state
clinical hypnogram. The VA is a recursive decoding method for
determining the sequence of latent (hidden) variables most likely
associated with a corresponding sequence of observations [43].
In the case of sleep staging, the VA uses the HMM to identify
an optimal sequence of hidden sleep stages x0:T that best fit the
observed set of EEG signals y0:T during a whole night of sleep
via maximum a posteriori sequence estimation. The final output
is the Viterbi path – a sequence of values x0:T = x0 , x1 , . . . , xT

that represents the automated sleep staging for a single night of
sleep. This process is performed on a per-night basis.

F. Comparison to Clinical Hypnogram

To assess the accuracy of the described algorithm, agreement
between automated sleep scoring and clinical sleep scoring was
determined via Cohen’s kappa. Cohen’s kappa (κ) measures the
inter-rater agreement between two scorers that classify items
into a number of mutually exclusive categories [45]:

κ =
po − pc

1 − pc
(6)

Here, po is the observed probability of agreement between
scorers and pc is the probability of agreement due to chance.
In this case, κ is thought to be a more robust measure than
raw accuracy. A κ value of 0–0.2 is considered essentially no
agreement, 0.2–0.4 slight agreement, 0.4–0.6 fair agreement,
0.6–0.8 high agreement and 0.8–1.0 nearly perfect agreement
[46].

III. RESULTS

A. Whole-Night EEG Multitaper Decomposition

To perform automated classification of whole-night sleep
architecture, F3-A2 single-channel sleep EEG was spectrally

Fig. 3. (a) Conventional FFT spectrogram of channel F3 EEG data for
a full night of sleep; 30s, 0s-overlapping windows. (b) Multitaper spectral
estimate of the same data set; 30s windows and 5 tapers. (c) Ground
Truth – full PSG, manually-scored clinical hypnogram; 30s epochs.

decomposed via the conventional FFT spectrogram and MT
spectral estimate.

Fig. 3 illustrates an example of time-frequency outputs of
both methods for 30s, non-overlapping windows over a whole
night of sleep. The corresponding manually-scored hypno-
gram is aligned with both representations of the single-channel
EEG data, revealing the connection between EEG spectral fea-
tures and full PSG-based sleep scored architecture. Conven-
tional spectral decomposition of the sleep EEG signal visually
exhibited noisier outputs, as compared to the MT approach.
Specifically, spectral bleeding was prevalent in frequency bands
between 3–7 Hz (i.e. θ and δ waves) and higher frequency com-
ponents (β and γ) when using the FFT. This is significant since,
β, and γ waves are essential in distinguishing between sleep
stages W, R, and N1, as previously noted. Though the MT ap-
proach resolved this problem and provided a more de-noised
time-frequency image of sleep EEG, both methods provided
clear association between spectral EEG features and manually-
scored sleep architecture.

B. Sleep Stage Spectral Density Estimation

Following EEG spectral feature extraction, the 5-fold cross
validation for 65 nights of HNUCSD and OSAUCSD sleep was
constructed. Density estimation was implemented in the train-
ing phase of the proposed algorithm to construct the stage-
specific EEG likelihood models Ri(y). All 11 features were
used for density estimation, culminating in 5 probability den-
sity functions specific to W, R, N1, N2, and N3 for each fold of
data.

Fig. 4 illustrates “ground truth” univariate histograms of all
60,903 extracted spectral features per each sleep stage (55 his-
tograms total). Many EEG features exhibit bimodal structure
within the same sleep stage, supporting the need to go be-
yond multivariate Gaussian modeling of intra-stage sleep EEG
activity. Conversely, Fig. 5 illustrates histograms for 12,084
epochs of HNUCSD data only, revealing unimodal Gaussian-like



1206 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 65, NO. 6, JUNE 2018

Fig. 4. Univariate, multimodal histograms of the eleven extracted EEG spectral features listed in Table I, for each true stage of sleep (55 histograms
total). Distributions were generated using all 60,903 30s epochs from 65 total HN/ OSA datasets and their true corresponding labels from expert
scoring. Per-stage breakdown of all labeled 30s epochs: W = 14,582, R = 7,105, N1 = 11,398, N2 = 23,021, N3 = 3,797.

Fig. 5. Univariate, multimodal histograms of the eleven extracted EEG spectral features listed in Table I, for each true stage of sleep (55 histograms
total). Distributions were generated using all 12,084 30s epochs from the 15 HN datasets and their true corresponding labels from expert scoring.
Per-stage breakdown of all labeled 30s epochs: W = 1,247, R = 2,351, N1 = 721, N2 = 5,609, N3 = 2,156.

structure across all sleep stage-EEG feature combinations. Fig. 6
illustrates an example of the 3D likelihood surfaces of both den-
sity estimation and fitted multivariate Gaussian approaches for
the domain of γ and broad EEG spectral features. EEG spectral
data were first used to construct a “ground truth” histogram of
the likelihood surface during stage R (yellow bars). Similarly,
the data were used in density estimation to generate a likelihood
surface (blue), which closely followed the histogram’s intricate
trimodal structure. Conversely, the fitted Gaussian likelihood
surface (red) failed to depict accurately the underlying distri-
bution of γ and broad features, instead modeling it as a single
wide peak between the three true modes.

C. Whole-Night Sleep Architecture Estimation

Results from stage-specific density estimation were imple-
mented into the 5-state HMM, along with initial probabilities
πi , transition probabilities Qi,j , and testing feature vectors yt .
In concert with the VA, the result was an estimation of whole-
night sleep architecture derived from single-channel F3-A2 and
Fpz-Cz EEG.

An example of the final algorithmic output is shown in Fig. 7.
Panels (a) and (b) illustrate the expert-scored clinical hypno-
gram and corresponding automated algorithm score for HN
sleep, respectively. Additionally, the same hypnogram from
Fig. 3 is shown again here in panel (c), with the corresponding



KANG et al.: STATE SPACE AND DENSITY ESTIMATION FRAMEWORK FOR SLEEP STAGING IN OBSTRUCTIVE SLEEP APNEA 1207

Fig. 6. (a) Yellow = Ground truth histogram of broad and γ spectral data in stage R. Blue = bivariate, multimodal distribution of the log-power
data generated via density estimation. (b) Blue = bivariate, multimodal distribution of the log-power data generated via density estimation. Red =
bivariate, unimodal distribution of the same data generated via fitted Gaussian. Floor projections depict the blue estimated surface topography.

Fig. 7. (a) HN clinical sleep hypnogram from full PSG and technician manual scoring. (b) HMM-based Algorithm using single-lead forehead EEG.
Subject AHI = 2.1/hour; Cohen’s Kappa = 0.69. (c) OSA clinical sleep hypnogram from full PSG and technician manual scoring. (d) HMM-based
Algorithm using single-lead forehead EEG. Subject AHI = 63.1/hour; Cohen’s Kappa = 0.70.

automated score shown in panel (d). As is evident, the algorithm
was able to follow closely the macrostructure of expert-scored
sleep architecture despite using only a single channel of EEG.
The algorithm was also able to capture many nuances in sleep
microstructure such as the many arousals from stage N2 to stage
W, and reversions back to sleep evident in the OSA hypnogram.
An exception of this was the algorithm under-scoring of stage N2
epochs, which were scored instead as N3 at moments through-
out the night of sleep. For the night of sleep in panels (c) and
(d), the subject had an AHI = 63.1 events/hr, i.e. severe OSA. In
spite of this finding, the algorithm was able to score accurately
whole-night sleep architecture with a κ = 0.70. To put this into
perspective, the mean inter-rater κ between two experts scoring
OSA sleep using full PSG is 0.59 [6].

D. Per-Night & Per-Epoch Sleep Staging Comparison

Cohen’s kappa was used to investigate the algorithm’s per-
night classification performance against corresponding expert-
scored hypnograms. Furthermore, two instantiations of the
proposed algorithm – one using a fitted multivariate Gaussian
likelihood model and another using KDE – were employed to
investigate the utility of density estimation in modeling the

Fig. 8. Box plots of per-night Cohen’s Kappa values, for two likelihood
models: fitted multivariate Gaussian and density estimation. Red line
= Median. Box edges = 1st and 3rd Quartiles. Whiskers = (1.5 ×
IQR). Dashed green and magenta lines = mean inter-rater Cohen’s
Kappa between two experts using full PSG in HN and OSA subjects,
respectively [6].

expected multimodal structure of sleep EEG. Fig. 8 shows a
box plot of the per-night κ values generated for each of the two
likelihood models. Each model made use of all 65 whole-night
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TABLE II
CONFUSION MATRIX FOR EPOCH-BY-EPOCH COMPARISON OF CLINICAL

PSG-BASED SLEEP SCORING VS. ALGORITHM SCORING

UCSD datasets (HNUCSD and OSAUCSD ) originally separated
in the 5-fold cross validation.

The framework utilizing density estimation exhibited a
slightly higher median (κ = 0.52) than the alternative using
a fitted Gaussian (κ = 0.47). Median values for both frame-
works would classify as “fair agreement”, and were in the same
agreement domain as the mean inter-rater agreement between
two experts scoring sleep in OSA (κ = 0.59). The inter-quartile
range (IQR) of the density estimation model was also narrower,
suggesting less variability in the model’s ability to classify accu-
rately whole-night sleep architecture. Moreover, whisker edges
of the density estimation-based model were both higher than
the fitted Gaussian approach, with the 4th quartile of κ values
entirely higher than the mean inter-rater κ for OSA. When only
inspecting the OSAUCSD results, the median κ and IQR for the
fitted Gaussian were 0.43 and 0.15, respectively, while for the
density estimation approach were 0.48 and 0.15, respectively.
These results suggest that density estimation procedures have
the potential to better statistically encode the structure of sleep,
and thus are appropriate for use in single-channel automated
sleep scoring. In addition to per-night assessment of the density
estimation-based algorithm, sensitivity and specificity values
were calculated on a per-epoch basis. Table II displays a 5-stage
confusion matrix between Clinical and Algorithm scores for
each of the 60,903, 30s epochs of sleep. The following is the true
per-stage breakdown of the 30s epochs: Wc = 14, 582, Rc =
7, 105, N1c = 11, 398, N2c = 23, 021, N3c = 3, 797.

Using a single-channel of EEG, the proposed algorithm per-
formed exceptionally well in per-epoch recall of stages W, R,
and N3 (85%, 80%, and 80%, respectively). Recall that the mean
inter-rater agreement for OSA data is just above 70%; by this
metric, the sensitivities for W, R, and N3 were on-par with full
PSG expert scoring. Stages N1 and N2 reported lower sensi-
tivities values (42% and 56%, respectively). This is expected
for stage N1, as it often resembles stages W and R; this mis-
classification is evident in the spread of W-R-N1 values in the
confusion matrix.

Regarding specificity, the algorithm performed best in stages
W and N2 (78% and 82%, respectively), with the remaining
three stages reporting values between 45-55%. For stage R, the
lower specificity is accounted for by misclassifications of stages
N1 and N2, while stage N1 was misclassified most as N2 and R.
For stage N3, specificity was low due to misclassification with
stage N2, though algorithm sensitivity for stage N3 was high.

Fig. 9. Box plots of per-night Cohen’s Kappa values, for four categories
of OSA severity. All values were generated via the density estimation-
based algorithm. HNPhysionet Fpz-Cz data were trained and tested
separately.

E. Algorithm Performance vs. OSA Severity

To determine the effect of OSA on algorithm performance, the
per-night κ values generated via the density estimation-based
algorithm were compared across healthy/normal (N = 15), mild
(N = 9), moderate (N = 9), and severe OSA (N = 32) categories
(Fig. 9). Overall, the downward trend of κ as a function of
OSA severity was modest, which indicates a robustness in the
algorithm’s ability to score appropriately degrees of fragmented
sleep architecture.

Data extracted from Physionet were separately used for algo-
rithm training and whole-night sleep architecture classification,
using the five-fold cross validation method described above.
The HNPhysionet data (N = 15) were trained and tested sepa-
rately due to the difference in sensing montage (Fpz-Cz) used
to acquire the public EEG data. The results of the HNPhysionet
analysis are also illustrated in Fig. 9, juxtaposed with HNUCSD
results to indicate the algorithm performance based on differ-
ing healthy/normal EEG acquisition. Using the Fpz-Cz single-
channel data, the algorithm produced a median κ exactly equal
to the mean inter-rater agreement between two experts scor-
ing sleep in HN subjects (κ = 0.65). Alternatively, to test the
generalizability of the trained algorithm, HNPhysionet data was
used as test data in the F3-A2-trained algorithm. As expected,
algorithm performance on the HNPhysionet data dropped to a
median κ = 0.47, with an IQR = 0.31, similar to the results for
severe OSA F3-A2 data. Still, more than half of the HNPhysionet
classification were considered to be in at least fair agreement,
which suggests the algorithm is able to reconcile similar sleep
EEG features in data from different sensing montages.

In addition to stratifying performance across OSA sever-
ity, κ values were further partitioned based on sleep stages,
from whole-night sleep architecture results. Fig. 10 illustrates
the stage-specific algorithm performance with increasing OSA
severity. Only HNUCSD and OSAUCSD data was included (N
= 65). As expected, per-stage κ performance trends downward
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Fig. 10. Box plots of per-night Cohen’s Kappa values, for each stage of
sleep and across OSA severity. HNPhysionet data not included because
of the different sensing montage.

as OSA increases from HN to severe OSA. An exception here
is stage N1, which exhibits a modest increase in κ spread, the
largest occurring for severe OSA classification. Stages W, R,
and N2 maintain median κ values in at least fair agreement
across OSA severity, with a large increase in IQR for stage R
in the severe case. Stage N3 appears as the most variable in
performance, with an abrupt drop in median κ upon transition
from mild to moderate OSA. Despite this, about one quarter (�8
nights) of all N3 κ values for severe OSA lie within the fair/high
agreement range. This observation, combined with sustained κ
values in the other stages of sleep, further suggests the single-
channel algorithm demonstrates classification robustness across
OSA severities.

IV. DISCUSSION

To improve the current state of automated sleep scoring and
provide a means for assessing pathological sleep, an algorithm is
presented that utilizes a limited physiologic dataset (i.e. single-
channel EEG) to estimate whole-night sleep architecture in OSA
and HN subjects. The algorithm makes use of KDE to generate
statistical models based on single-channel sleep EEG spectral
features, and a HMM to formulate whole-night sleep architec-
ture as a state space, transition-constrained process. Few studies
have focused automated sleep scoring efforts on OSA subjects
[10], [12], [24], [27], and none have implemented a multimodal
statistical framework such as that presented here for investigat-
ing OSA sleep architecture. The results of this study indicate
that this statistical approach to scoring sleep in OSA subjects
with single-channel sleep EEG is effective and promising as a
means to emulate expert-level scoring in an automated fashion.

Spectral EEG features were generated via the MT spectro-
gram, which has been shown to produce more accurate spectral
estimates of EEG, as compared to the standard FFT, wavelet
transform, and other spectral decomposition techniques [33],
[34]. Each feature was extracted to embody the rules used for
visual scoring of sleep EEG, specifically extracting the activity
in EEG frequency bands that possess information about each
or a combination of the five stages of sleep. For example, a
0.1-50 Hz broad power feature was used to quantify motion

artifact as sharp deflections spanning most frequency bands in
the recorded EEG, which typically appear during stage W and
at the onset of arousal. Other well-known EEG rhythms (e.g.
α, θ, and δ) were used to quantify activity in corresponding
characteristic sleep stages, as per Table I. Unique to this work
is the separation of the α band into four 1 Hz bands (α1 − α4)
to capture the nuanced α activity in stage R, which is expected
as a 1–2 Hz slower α rhythm compared to stage W [4].

To develop the distribution of spectral features within each
stage of sleep, density estimation was used over standard fitted
Gaussian approaches. Specifically, KDE was implemented to
generate likelihood estimates capturing multimodal structure of
the joint density surface in regards to spectral variability within
a stage of sleep. For example, approximately 20% of the adult
U.S. population generates little or no α activity during wakeful-
ness [4], [47]. In this context, a standard Gaussian model might
not accurately represent both the “presence” and “absence” of
α activity within stage W, incorrectly approximating a bimodal
distribution as a single over-smoothed mode in the domain of
α activity. In addition, multimodal statistical modeling of sleep
stages can begin to quantify the errors/variability in human sleep
scoring within sleep stages. Since visual, per-epoch sleep scor-
ing is not an exact science, small variations in intra-stage human
sleep scoring can manifest as large discrepancies in standard
Gaussian modeling, resulting in poor algorithmic sleep scoring
performance.

Figs. 4 and 5 illustrate univariate histograms of all eleven
spectral features (Table I) for each sleep stage, depicting the uni-
modality of HN sleep EEG and the sometimes subtle changes
in EEG spectra as OSA subjects go into deeper modes of sleep.
In some instances, a standard Gaussian would represent the data
distribution accurately (e.g. most HN sleep and the unimodal
distributions of β and vlf features in most stages for OSA). Con-
versely, other features – in particular, γ, δ, σ, and θ – exhibited
distinct multimodal structure across all stages of OSA sleep,
which cannot be correctly captured by the standard Gaussian
(Fig. 6).

In OSA, each of the four α band features extracted display a
transformation from unimodal, skewed Gaussian-like structure
in stage W, to bimodal structure in the positive PSD domain
during stage N3. This is interesting since α-type rhythms are
not typically considered key indicators of deeper sleep, yet dis-
tinct peaks centered around 0 dB and 30 dB are present in N2
and N3 sleep, the latter value of which is similar to that in
stage W and stage R. This suggests that the histograms (and
as a consequence, the KDE likelihoods) capture two different
populations of spectral EEG – one centered about 0 dB and an-
other centered about 30 dB. The former might portray the “typ-
ical” suppressed EEG signature of α activity in N2-N3 sleep,
while the latter might reflect an increase in α activity related to
respiratory-based arousals and increased sympathetic activation
during these epochs of sleep in OSA subjects [2].

Whole-night sleep architecture was modeled as a HMM
transition-constrained process, with conditional likelihoods dic-
tating physiologic transitions during sleep. Previous work in
the literature has used HMM to model and score sleep [16]–
[21], though none has focused on multimodal class conditional
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densities, nor have they exclusively focused on OSA subject data
as used in the presented HMM framework. The 5-stage transition
values used in the HMM were extrapolated from previous work
on a 4-stage transition model – Wake, REM, Light (N1/N2),
Deep (N3) – of sleep in OSA subjects [44]. Specifically, the
proposed algorithm implemented transition likelihoods for N1
and N2, each stage with identical transition probabilities to en-
sure parity when expanding the “light” stage values to the new
5-stage model. Transitions between N1 and N2 were made more
probable (e.g. Qi,j = 0.20), compared to transitions to other
stages (e.g. Qi,j = 0.10), to reflect the increased fragmentation
and wake-sleep characteristics of sleep in OSA subjects.

Cohen’s kappa values for per-night, KDE-based classification
of sleep architecture are shown in Fig. 8. Values range from κ =
0.20 to κ = 0.77, with a median κ = 0.52 and more than three
quartiles of the values demonstrating at least “fair agreement” in
classification accuracy when compared to expert-scored hypno-
grams. For perspective, the mean inter-rater Cohen’s kappa be-
tween experts scoring with full PSG in HN and OSA patients
is κ = 0.65 and κ = 0.59, respectively [6]. While the fitted
Gaussian model also produced κ values in fair agreement, this
is suspected to be due largely in part to the inclusion of HN EEG
datasets, which stand to benefit less from a density estimation-
based approach when a simpler unimodal Gaussian will suffice,
as depicted in Fig. 5. It seems that density estimation plays
a smaller role in improving sleep scoring in HN subjects, in-
stead excelling when implemented on sleep that is heavily frag-
mented (such as in OSA). These results suggest that the proposed
algorithm performs quite well in scoring sleep architecture in a
mix of HN and OSA sleep, despite only using a single channel
of EEG data.

Further investigation of algorithm performance revealed a
modest inverse relationship between per-night κ agreement and
OSA severity (Fig. 9). Increased sleep fragmentation equates to
more wake-sleep transitioning and a general difficulty in sleep
architecture classification. While agreement between the algo-
rithm and clinical scoring decreases as OSA severity increases,
Fig. 9 illustrates that the algorithm achieved fair agreement val-
ues above κ = 0.50 for almost half of the 32 total nights of
sleep with severe OSA. An example of the algorithm’s ability
to accurately classify sleep architecture in a subject with se-
vere OSA (AHI = 63.1 events/hr) is shown in Fig. 7. Further
speaking to performance on HN data, results from a separate
5-fold cross validation on HNPhysionet data (Fig. 9) show that
the algorithm works equally well on data derived from another
EEG montage (i.e. Fpz-Cz), emphasizing the generalizability of
the described methods. This suggests that the algorithm may not
only be robust to certain degrees of OSA severity, but can also
be improved to appropriately score sleep in a manner agnostic
to sleep fragmentation and EEG acquisition.

A stage-specific analysis of the combined HNUCSD and
OSAUCSD results further revealed modest deterioration of the
algorithmic single-channel scoring for increasing OSA severity
(Fig. 10). As expected, results for stages W, R, and N2 are pri-
marily in good agreement, with little deterioration across OSA
severity. Interestingly, stage N1 agreement increased slightly as
AHI increased, running counter to other sleep stages. As OSA

worsens, an increase in sleep fragmentation generally leads to an
increased frequency of stage N1, as patients arouse from sleep
more often throughout the night. As a consequence, EEG spec-
tral features related to stage N1 may become more prominent,
which may accommodate increased classification accuracy of
stage N1 in this analysis.

An increase in N1 scoring during OSA would elicit an infre-
quency of other sleep stages for the same total sleep time, such as
stage N3 and stage R (whose specific discrimination from N1 is
already difficult in HN patients). For stage N3, many agreement
values in moderate and severe OSA dropped dramatically to
κ = 0.00, though some values extend past fair agreement and
well into high agreement. The same occurs in stage R for mild
and severe OSA. Based on the large degree of κ spread, it
appears low Cohen’s κ values not only arise from sheer mis-
classification between two classes, but also from an uneven
distribution of samples between two classes (e.g. in a whole
night of sleep, Rc = 25 epochs, Non-Rc = 600 epochs). The
result is a trade-off in stage-specific κ performance due to OSA
severity, specifically with infrequent sleep stages demonstrating
a high agreement due to chance, which by virtue of the numera-
tor of (6), results in a low κ score. This happens to be an example
of low κ values resulting from imbalance/low prevalence of an
observation, a limitation of Cohen’s κ which has been discussed
extensively in the literature [48].

Whole-night classification results demonstrate improved N1
scoring over the literature, while maintaining high degrees of
classification for other sleep stages. This suggests that the algo-
rithm has the potential to accurately and automatically generate
desirable sleep metrics such as “Total Sleep Time”, “Wake After
Sleep Onset”, and “Sleep Efficiency”. Even so, improvement is
necessary, in particular to address the difficulty in classification
for datasets with increased N1-N2 transitioning. As discussed,
this is a general problem of automated sleep scoring, even for
scoring in HN subjects, demonstrated by low-sensitivity results
for N1 staging in the single-channel algorithm literature [10],
[13], [16], [23], [24], [25], [27], [28].

Another area to be addressed is the algorithm sensitivity and
specificity between stages N2 and N3. Differences in the accu-
racy of N2-N3 scoring have been observed before, in particular
the over-scoring of N3 compared to N2 for data derived from
frontal sensors, as compared to central derivations [49]. More
generally, a marked difference in N2-N3 scoring has been ob-
served between automated and manual scoring of sleep [11].
It is difficult to ascertain if automated algorithms such as the
proposed are incorrectly scoring N2-N3 epochs of sleep, if the
discrepancy is due solely to bias in the manual scoring per-
formed by the expert, or a combination of the two. Because an
automated algorithm can quantify minute differences in EEG
(e.g. presence and strength of delta waves) more easily and effi-
ciently than a visual scorer, it has been suggested that automated
scoring is possibly more precise in N2-N3 classification [11].

The presented work utilized the MT spectral estimate to gen-
erate and extract frontal EEG spectral features. Implementa-
tion of novel spectrotemporal decomposition techniques [50]
might serve to improve algorithm performance through inte-
grated knowledge of the sparse macrostructure of sleep EEG
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when rendering spectral estimates. Regarding EEG-based fea-
tures, frontal EEG-derived eye movement and K-complex in-
formation can be extracted via cross-correlation approaches to
improve the specificity in scoring stages R and N2, respectively
[51], [52]. Moreover, a natural extension of the proposed work
is the automated detection of arousals and apneas/hypopneas
based on single-channel/limited physiologic data streams. A
method for detection of relevant sleep phenomena, and subse-
quent generation of clinical criterion for OSA screening, could
be formulated by closer inspection and characterization of the
multimodal distributions of EEG spectra described here. By
using appropriate statistical methods that accommodate multi-
modal distributions, it may be possible to categorize an arbi-
trary epoch of sleep EEG as HN or OSA-like. Moreover, it may
be possible to use such per-epoch categorizations to estimate
whole-night OSA severity. As such, the resulting paradigm, us-
ing only single-channel EEG, has the potential to serve as a
surrogate for clinical assessment of arousal indices or AHI. In
addition, it may even help characterize different phenotypes of
OSA and other sleep disorders.

Finally, to facilitate frontal-based sensing of physiologic sig-
nals during sleep, novel technologies in the field of wearable
sensors and systems [53]–[55] can be leveraged as tools for un-
obtrusive, peel-and-stick sleep monitoring. Combined with low-
resource algorithms – such as the proposed statistical methods
– wearable systems can begin to monitor sleep objectively, thus
allowing clinical metrics that go beyond the current standard of
subjective recall.

V. CONCLUSION

New technologies have the potential to disrupt the clinic,
and the field of sleep medicine may be able to move beyond
the limitations of the “gold standard” PSG through smaller and
more efficient devices for recording and generating clinical
sleep metrics. While the recent surge of minimalistic, at-home
sleep monitoring devices aims to improve sleep medicine prac-
tices, these endeavors lack analytic techniques that efficiently
estimate sleep architecture from reduced data streams. This
work outlines a statistical framework for classifying whole-
night sleep architecture from single-channel EEG spectral
features. The algorithm formulated sleep architecture and the
five clinical stages of sleep as a transition-constrained, state
space process with intra-stage multimodality in the domain of
EEG spectra. Results of the study show the algorithm is able to
utilize single-channel EEG to automatically discriminate and
score whole-night sleep architecture in both HN and OSA sleep,
in many cases with high Cohen’s kappa agreement, when com-
pared to clinical scoring from experts using full PSG. Moreover,
the algorithmic approach sustains fair scoring agreement for
increased OSA severity, demonstrating potential for generaliz-
ability and objectivity in the evaluation of the many intricacies
of sleep and sleep disorders. This is one of just a few studies that
have implemented state space modeling for single-channel sleep
scoring, and the first known study to implement such statistical
methods for automated sleep architecture performance in OSA
subjects. The continued development of such low-resource

algorithms – guided by clinical expertise and emphasizing clin-
ical practicality – will help realize automated tools for assessing
sleep and sleep disorders in inpatient and outpatient populations.
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