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Abstract—We present a compartmentalized approach to finding
the maximum a posteriori (MAP) estimate of a latent time series
that obeys a dynamic stochastic model and is observed through
noisy measurements. We specifically consider modern signal pro-
cessing problems with non-Markov signal dynamics (e.g., group
sparsity) and/or non-Gaussian measurement models (e.g., point
process observation models used in neuroscience). Through the
use of auxiliary variables in the MAP estimation problem, we show
that a consensus formulation of the alternating direction method of
multipliers enables iteratively computing separate estimates based
on the likelihood and prior and subsequently “averaging” them
in an appropriate sense using a Kalman smoother. As such, this
can be applied to a broad class of problem settings and only re-
quires modular adjustments when interchanging various aspects of
the statistical model. Under broad log-concavity assumptions, we
show that the separate estimation problems are convex optimiza-
tion problems and that the iterative algorithm converges to the
MAP estimate. As such, this framework can capture non-Markov
latent time series models and non-Gaussian measurement mod-
els. We provide example applications involving 1) group-sparsity
priors, within the context of electrophysiologic specrotemporal es-
timation, and 2) non-Gaussian measurement models, within the
context of dynamic analyses of learning with neural spiking and
behavioral observations.

Index Terms—Bayesian, ADMM, convex optimization, sparsity,
dynamics, filtering.

I. INTRODUCTION

W E CONSIDER the problem of estimating a latent time
series based on an underlying dynamic model and noisy

measurements. Such a problem appears in a variety settings,
including (but certainly not limited to) tracking [1], medical
imaging [2], and video denoising [3]. Given the broad applica-
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bility of this problem formulation, the underlying models that
are used inevitably become increasingly complex.

Certain scenarios are well studied, such as the case of a lin-
ear system with Gaussian noise, where it is well known that
the maximum a-posteriori (MAP) point estimate can be ob-
tained using a Kalman smoother (KS) [4]. When introducing
non-linearities, alternatives include the extended Kalman filter
(EKF), which relies on linear approximations, as well as the
unscented Kalman filter (UKF) [5] and Particle Filter (PF) [6],
which use sample based techniques. While the EKF and UKF
are well suited for a broad class of problems, they are not well
suited for models with non-Gaussian noise. This is problematic
for the increasingly popular problem of incorporating sparsity
inducing models to latent signal estimation. These problems in-
clude exploiting sparsity in the underlying signal [7]–[10] in
addition to exploiting sparsity in the signal dynamics [11]–[13].
While some of these methods utilize �1-regularization to enforce
sparsity at a local level and enable causal prediction, there is of-
ten knowledge of global structures, such as those favored by the
group lasso [14], that dictate a need for batch-wise estimation.
In such cases, the desired estimation problem deviates from the
classical state estimation problem in that the underlying signal
is no longer Markov. In such a scenario, there is no clear exten-
sion to the EKF, UKF, or PF that may be utilized to address the
non-Markovicity of the underlying signal.

The broad scope of the problem in question dictates a need for
a systematic approach to latent time series estimation for a vari-
ety of measurement models and system models. Furthermore, a
solution framework that can compartmentalize these two mod-
els facilitates interchangeability and allows new regularization
techniques to be easily incorporated to an estimation procedure.

We develop a framework using the alternating direction
method of multipliers (ADMM) [15] that, under mild (i.e., log-
concavity) assumptions, yields the MAP estimate for problems
with non-Markov latent variables and/or nonlinear observations.
While ADMM has been utilized to decompose specific dynamic
systems into simpler subproblems [13], [16], our approach ap-
plies to arbitrary log-concave dynamic models. In particular, we
utilize auxiliary variables to enable a solution involving iterative
updates to three modules, one that pertains to the measurement
model, another that pertains to the prior distribution on the la-
tent signal, and a third that is a Kalman smoother. As such, our
framework enables various sparsity models to be easily applied
to the signal and/or dynamics with adjustments only required to
the corresponding module. We demonstrate implementation of
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the framework in two distinct applications, namely latent state
estimation and spectrotemporal estimation. We show that in the
case of state estimation, our method outperforms a fixed interval
smoother and particle filter for two state-space models coupled
with non-Gaussian observations. In the case of spectrotemporal
estimation, we demonstrate the efficacy of our method when
using non-Markov priors. The proposed method yields an intu-
itive approach to latent process estimation with iterative use of
a Kalman smoother in tandem with standard convex optimiza-
tion techniques. We provide a mathematical justification for the
intuition by proving that our approach guarantees convergence
to the MAP solution under the same relatively mild conditions
that apply to general ADMM approaches. Finally, we provide
software to enable the reader to reproduce the results of this
paper and to easily apply the framework to novel models.1 Our
contributions may be summarized as follows:

� We present an efficient iterative solution framework for
latent time series estimation with a guarantee of conver-
gence to the MAP estimate under mild log-concavity as-
sumptions.

� In the presence of non-Linear, non-Gaussian measurement
models, our method does not require a Gaussian approx-
imation, unlike KS variants, and is more efficient than
Sequential Monte Carlo (SMC) methods.

� Our framework accommodates non-Markov signals de-
spite there being no clear method for adapting EKF, UKF,
and SMC methods for such a scenario, particularly when
the prior applies to highly non-linear functions of the latent
process, such as a singular value decomposition.

� Through the use of auxiliary variables, the ADMM solu-
tion to our reformulated MAP estimation problem is mod-
ular, with the observation and system models in disjoint
modules that are unified by a Kalman smoother.

The paper is structured as follows: Section II provides the
general formulation of the problem we are solving in addition
to a brief review of relevant work solving specific instances of
the problem. Section III details a novel systematic approach
for solving the MAP estimation problem in its general form.
Section IV demonstrates the capabilities of the framework
through implementation on two existing problems. Section V
concludes the paper with a discussion of the results and future
work.

II. PROBLEM FORMULATION

A. Notation

While it is intended that the notation is presented unambigu-
ously, we here present some notational conventions. Bold letters
are used to represent vectors and matrices, whereas non-bold
letters represent scalars. Subscripts are used for indexing scalar
elements of a vector, or columns of a matrix. A double subscript
is used to specify scalar elements of a matrix. For example, xn

1An implementation of the proposed framework can be found
in the following publicly available GitHub repository: https://github.
com/gabeschamberg/nonmarkov-timeseries-estimation/releases/tag/v1.1. This
repository includes the iPython [17] notebooks that were used to generate Figs. 2
and 3 and Table III.

gives the nth element of a vector x, xn gives the nth column
of a matrix x, and xn,m gives the mth row of the nth column
of a matrix x. Capital/lowercase letter pairs represent either
random variable/realization pairs or total count/index pairs. For
example, we may have that xn gives a specific value of the ran-
dom vector Xn , which is the nth column of a random matrix
X with N columns in total. We let f and p denote probability
density functions (pdfs) and probability mass functions (pmfs),
respectively. Various joint and conditional pdfs and pmfs are
made clear by their subscripts. For example, the pdf of X given
Y = y is fX |Y (·|y). We let R denote the space of real numbers,
R+ denote the non-negative reals, RA×B denote the space of A
by B real valued matrices, and RAB denote the space of real
valued vectors of length A times B.

B. Problem Setup

Let X and Y be measurable spaces and N be the length
of time series pertaining to the latent process X ∈ XN and ob-
served process Y ∈ YN . Unless otherwise specified, we assume
X = RK and Y = RP where K is the dimension of the latent
process at any time, and P is the dimension of the observation
process at any time. As such, X ∈ RK×N is the latent time series
we wish to estimate and Y ∈ RP ×N is the collection of noisy
observations. Furthermore, assume that these observations are
conditionally independent given the underlying time series:

fY |X (y | x) =
N∏

n=1

fYn |Xn
(yn | xn ) (1)

where fY |X is the likelihood of the entire collection of obser-
vations given the entire latent time series and fYn |Xn

is the
likelihood of a single observation given the corresponding ele-
ment of the latent time series.

Next, define the latent signal’s dynamics (or system behavior)
in terms of W ∈ RK×N for which

Wn =

{
X1 n=1

Xn − DXn−1 n = 2,. . . ,N
,

where D ∈ RK×K is a transition matrix and Wn ∈ RK and
Xn ∈ RK represent the nth columns of W and X, respec-
tively. For compactness we write this as W = A(X), where
A represents a linear operator that is fully defined by D. We
assume that W is distributed according to a known prior pdf
fW (w). Note that this framework includes, for the special case
of Wn = Xn − Xn−1 and Wn ∼ N (μn ,Σn ) are independent
Gaussian random vectors for n = 2, . . . , N , the well-studied
scenario in which the underlying time series X is a Gauss-
Markov process.

Here, we consider the problem of finding the maximum a
posteriori estimate:

x̂ = argmin
x

− log fY |X (y | x) − log fX (x) (2)

where − log fY |X (y | x) is the negative log-likelihood and
− log fX (x) is the negative log-prior. We note that because W
is a linear function of X, we have fX (x) ∝ fW (A(x)). This
relationship indicates that knowing a prior on either X or W
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induces a prior on the other. Thus, we can equivalently rewrite
our problem as:

x̂ = argmin
x

− log fY |X (y | x) − log fW (A(x)) (3)

= argmin
x

L(y | x) + βφ(A(x)) (4)

with β ∈ R+ and where we define the measurement model
L : RN×K → R and system model φ : RN×K → R as:

L(y | x) := − log fY |X (y | x) (5)

φ(w) := − log fW (w)
β

. (6)

The inclusion of β in (4) is to facilitate the cases when the
system model is only known up to a proportionality constant
or when φ is a regularizer used to exploit a desired dynamic
characteristic of the latent signal (as opposed to representing the
true distribution of W). In either of these cases β is interpreted
as a tuning parameter used to control the extent to which the
system model is weighted (as in λ throughout [14]).

Throughout this paper, we will interchangeably use the names
log-likelihood/measurement model in reference to L, and log-
prior/system model/dynamic model in reference to φ. Due to
the assumption that observations are conditionally independent
given the state variables, the measurement model can be decom-
posed into a sum over N measurements, each depending on the
state variable at a single time instance:

x̂ = argmin
x

(
N∑

n=1

Ln (yn | xn )

)
+ βφ(A(x)) (7)

where Ln (yn | xn ) := − log fYn |Xn
(yn | xn ). It should be

noted that the problem presented in (7) is made difficult by the
second term. In particular, imposing a prior on the differences
of the underlying time series prevents separability across the N
time points. Furthermore, by allowing for non-Markov models,
it is possible to have models that do not allow the second term
to be separated into terms each containing only xn and xn−1 for
each n = 1 . . . N . In the following section, we present a frame-
work for efficiently solving problems in the form of (7) for a
broad class of measurement models L and system models φ.

C. Related Work

Works related to our proposed method include both the inves-
tigation of new algorithms for estimating latent time series and
the creation/application of new time series models. Notably, the
Kalman smoother [4] and its variants [5], [6] provide structured
approaches to estimating latent signals in a subset of problems
with dynamical system models and noisy measurements. While
the Kalman smoother is MAP optimal for the very specific case
of a linear system with Gaussian noise, its non-linear variants do
not guarantee optimality and do not offer solutions for a compre-
hensive class of measurement and system models. In particular,
there has been growing interest in models exploiting the sparsity
of states and/or dynamics of signals [7]–[9], [11]–[13], which in
many cases do not lend themselves to solutions via the existing
Kalman smoother variants.

TABLE I
EXAMPLES OF COMMON MODELS. FOR THE MULTIPLE MODALITIES CASE, WE

DEFINE y = (y(1) , . . . , y(J ) ) TO BE A J -TUPLE OF SIMULTANEOUS AND

CONDITIONALLY INDEPENDENT OBSERVATIONS, EACH WITH ITS OWN

DIMENSIONALITY AND ASSOCIATED MEASUREMENT MODEL L(j )

TABLE II
EXAMPLES OF MEASUREMENT MODEL/SYSTEM MODEL PAIRINGS

IN PREVIOUS WORKS

For such sparsity-inducing models, existing causal estimators
are often heuristic extensions of the Kalman filter, such as �1-
regularized Kalman filter updates [12] and tracking a belief of
the support set [7]. Causal estimation is made particularly chal-
lenging for the models that are non-Markov in nature. As such,
the aforementioned causal estimators lack performance guaran-
tees. Existing batchwise solutions utilize a Kalman smoother to
solve the updates for a particular iterative algorithm, such as
IRLS for group sparse dynamics [11] and ADMM for group
sparse states [13]. In the latter example, their non-consensus
formulation of ADMM is reliant upon the choice of a Gaussian
system model.

In addition to the Kalman smoother variants, sample based
methods such as Markov chain Monte Carlo (MCMC) and SMC
are viable options for latent time series estimation. While these
methods can accommodate non-linear and non-Gaussian models
[18] and can simultaneously estimate the state and model pa-
rameters [19], [20], they are often computationally prohibitive.
Furthermore, these methods do not have a straightforward ex-
tension to non-Markov and non-linear priors such as the �1/�2
and nuclear norm priors (see Remark 2).

Here we propose a generalized framework for obtaining the
MAP estimate in many of the aforementioned problems in a
batchwise manner. Tables I and II show the models used in some
of these problems and serve to illustrate the primary contribution
of our framework, namely that for a given problem, the solution
is modular in that the choice of measurement model can be
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Fig. 1. Block diagram of the modular MAP estimation framework illustrates how the selection of L, φ, and A affects independent parts of the estimation
procedure.

made independently of the system model without requiring a
complete rederivation of the solution.

III. MODULAR MAP ESTIMATION FRAMEWORK

The alternating direction method of multipliers (ADMM) al-
lows large global problems to be decomposed into smaller sub-
problems whose solutions can be coordinated to achieve the
global solution. ADMM offers an iterative solution of the dual
problem that has the decomposability of dual descent in addi-
tion to the convergence guarantees of the method of multipliers,
which hold under fairly mild conditions. While the details of
dual optimization and ADMM are omitted here, they can be
found in [22] and [15], respectively.

We begin by reformulating (7) to create separability in the
objective function by including w as an optimization variable
and introducing a constraint to preserve the relationship between
x and w:

(x̂, ŵ) = argmin
x,w

N∑

n=1

Ln (yn | xn ) + βφ(w)

s.t. w = A(x). (8)

The optimization problem given by (8) can be solved using
ADMM, and would yield a solution that enables the measure-
ment model and penalty function to be addressed in independent
subproblems. However, when using the above formulation, the
update equations yielded by the ADMM algorithm would re-
quire one of the aforementioned approximate or sample-based
methods for non-Gaussian measurement models (see Remark 1).

We use a variant of ADMM known as consensus ADMM and
construct a modular solution framework shown in Fig. 1 that
only requires making local adjustments to the solution when
modifying the measurement model (L), penalty function (φ), or
transition model (A). This is accomplished by introducing an
auxiliary variable z ∈ RK×N to achieve separability (of x and
w) in the constraints as well as the objective function:

(x̂, ŵ, ẑ) = argmin
x,w ,z

N∑

n=1

Ln (yn | xn ) + βφ(w)

s.t. x = z

w = A(z). (9)

The optimization problem given by (9) is termed the consensus
formulation, and z the consensus variable. By introducing this
variable, our iterative updates with respect to the measurement
model and penalty function are not only independent of each
other, but are also independent of the transition model deter-
mined by A.

The first step in solving (9) using ADMM requires generating
the augmented Lagrangian:

Lρ(x,w, z, λ,α) =
N∑

n=1

Ln (yn | xn ) + βφ(w)

+ 〈λ,x − z〉 + 〈α,w −A(z)〉
+
ρ

2
||x − z||2F +

ρ

2
||w −A(z)||2F (10)

where λ ∈ RK×N and α ∈ RK×N are Lagrange multipliers,
〈·,·〉 is the Frobenius inner product, || · ||F is the matrix Frobe-
nius norm, and ρ ∈ R+ is the penalty parameter for the aug-
mented Lagrangian. Note that in the case where ρ = 0, the aug-
mented Lagrangian is equivalent to the standard (unaugmented)
Lagrangian.

Given the augmented Lagrangian, the ADMM solution is
obtained by iteratively alternating between minimization with
respect to the primal variables (x, w and z) and performing
gradient ascent on the Lagrange multipliers. These iterations
represent a trade off between finding a solution that minimizes
the cost function in (9) while ensuring that the Lagrange mul-
tipliers are such that the dual function of (9) is increasing in
i and thus ensuring the constraints are satisfied. Letting x(i)

represent the estimate of x after i iterations (similarly for w(i) ,
z(i) , λ(i) , and α(i)), each iteration of ADMM is composed of
the following updates [15, Sec. 3.1]:

x(i+1) = argmin
x

Lρ(x,w(i) , z(i) , λ(i) ,α(i))

w(i+1) = argmin
w

Lρ(x(i+1) ,w, z(i) , λ(i) ,α(i))

z(i+1) = argmin
z

Lρ(x(i+1) ,w(i+1) , z, λ(i) ,α(i))

λ(i+1) = λ(i) + ρ(x(i+1) − z(i+1))

α(i+1) = α(i) + ρ(w(i+1) −A(z(i+1))). (11)



3144 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 12, JUNE 15, 2018

By fixing all but one variable in each update, the objective
functions can be simplified by dropping the terms in (10) that
do not contain the optimization variable for the corresponding
update. As a result, when updating with respect to the measure-
ment modelL and the system model φ, we only need to consider
the model corresponding to that update and an �2-norm prox-
imal operator [23] that ensures the update is moving in the
appropriate direction to achieve a global consensus. This in-
clusion of the proximal operators in the augmented Lagrangian
enables the use of ADMM with non-smooth objective func-
tions [23, Sec 4.4]. Then, updating of the consensus variable
involves “centering” it such that it gives equal representation to
our current estimates based on the measurements and our esti-
mates based on the system dynamics. In this sense, our ADMM
framework yields a mathematical justification for a very in-
tuitive approach, namely, iteratively finding the best estimate
based on measurements, finding the best estimate based on dy-
namics, and “averaging” the two in the appropriate sense. This
viewpoint will be made clearer in the following sections where
we detail the specific update equations.

A. Measurement Model Update

When updating with respect to the measurement model, only
terms containing x in the augmented Lagrangian must be con-
sidered. To simplify notation, we will consider the scaled form
of the update equations [15, Sec. 3.1.1], which can be obtained
by combining the appropriate linear and quadratic terms in (10)
by completing the square:

x(i+1) = argmin
x

N∑

n=1

Ln (yn | xn ) +
ρ

2
||x − x̃(i) ||2F (12)

where x̃(i) := z(i) − λ(i)/ρ is fixed within the scope of this
update. Details for deriving the scaled form of the update can be
found in Appendix A. Given that the squared Frobenius norm
can be decomposed to the sum of squared �2 norms, we note that
the measurement model update is separable overn, meaning that
we can solve for x(i+1)

n for each n = 1, . . . , N independently:

x(i+1)
n = argmin

xn

Ln (yn | xn ) +
ρ

2
||xn − x̃(i)

n ||22 (13)

where x̃(i)
n := z(i)

n − λ(i)
n /ρ.

Remark 1: Note that the ability to separate each of the N
updates is a result of the inclusion of the consensus variable.
Excluding this variable would require that the dynamics be con-
sidered in the update of the measurement model:

x(i+1) = argmin
x

N∑

n=1

Ln (yn | xn )

+
ρ

2
||xn − Dxn−1 − x̃′(i)

n ||22

where x̃′(i)
n := w(i)

n − γ
(i)
n /ρ, x0 := 0, and γ represents the sin-

gle Lagrange multiplier that would be required in solving (8) us-
ing ADMM. Requiring that the dynamics of the underlying time
series be included in the measurement model update prohibits

solving for x(i)
n independently across N . Thus, using ADMM

in this fashion does not offer any simplifications over traditional
approaches for non-Gaussian measurement models. As such,
incorporation of the consensus variable not only enables faster
processing by allowing each update to be parallelized across
N , but it allows the framework to be applied in a straightfor-
ward, non-approximate manner to a broad class of measurement
models.

It should be noted that while we assume conditional indepen-
dence of the observations given the latent time series, one can
revert to the update in (12) for the case when the observations
are correlated. In this case the ability to parallelize across n is
lost, but the ability to ignore system dynamics is preserved (i.e.,
the optimization problem in (12) still does not depend on φ).

B. System Model Update

In the system model update, only terms in (10) that contain
w must be included. Again, we consider the scaled form:

w(i+1) = argmin
w

βφ(w) +
ρ

2
||w − w̃(i) ||2F (14)

where w̃(i) := A(z(i)) − α(i)/ρ. In this form we can clearly
interpret the system model update as finding a new collection
of latent variable transitions w(i+1) that is both representative
of our system model φ and proximal to the appropriately scaled
current consensus on the transitions w̃(i) .

The key observation is that this framework imposes no restric-
tions as to whether or not our underlying signal is Markov. In the
case where the signal is indeed Markov, then w(i+1)

n would be
updated independently over n, but in general we do not assume
this is the case. This provides the ability to impose batch-level
structures on the dynamics of the signal. Furthermore, we note
that the nature of the proximal operator enables closed form
solutions when φ is chosen to be a number of common sparsity
inducing priors. In particular, because the proximal operator is
not multiplying w by a non-orthonormal matrix, the �1 , group
sparse, and nuclear norm priors all offer soft-thresholding solu-
tions [24]. Furthermore, we note that for a fixed K, the com-
plexity of the soft-thresholding solutions for the �1 and group
sparse priors scale linearly with N per iteration. The nuclear
norm prior, however, requires a singular value decomposition
(SVD), and thus scales quadratically with N per iteration [25].
Similarly, for a fixed N , the same scaling factors apply to K. It
should be noted however, that if increasing N and K, the com-
plexity of the SVD will scale quadratically with max{K,N}
and cubically with min{K,N}.

C. Consensus Update

Updating the consensus variable depends on neither the mea-
surement model nor the system model. We can think of this
step as averaging our current estimates of our signal based on
measurements x(i+1) and based on dynamics w(i+1) :

z(i+1) = argmin
z

||z − z̃(i)
x ||2F + ||A(z) − z̃(i)

w ||2F (15)



SCHAMBERG et al.: MODULARIZED EFFICIENT FRAMEWORK FOR NON-MARKOV TIME SERIES ESTIMATION 3145

where z̃(i)
x := x(i+1) + λ(i)/ρ and z̃(i)

w = w(i+1) + α(i)/ρ.
Note that given the nature of the linear operator A, (15) can
always be solved efficiently using a Kalman smoother.

This step clarifies the notion of “averaging” the current es-
timates x(i+1) and w(i+1) . By framing our problem from a
consensus ADMM perspective, we can carve out various ele-
ments of the model and delegate them to independent updates.
Then, given the nature of the relationship between the signal x
and the dynamics w, establishing consensus between the two
estimates is a Kalman smoothing problem regardless of the
measurement and system models. This is a result of the use of
�2-norms in the augmented Lagrangian, which can be thought
of as representing Gaussian noise with identity covariance. In
other words, at each iteration i, the consensus update is a Kalman
smoothing problem where each of our measurements are given
by z̃(i)

x and each of our predictions are given by z̃(i)
w . In this

sense, the consensus update gives equal weight to the current
iterates of our measurement and system estimates. This follows
from the fact that the log-likelihood and log-prior have their
own uncertainty terms that dictate how far the updates x(i+1)

and w(i+1) can deviate from the consensus in their respective
updates, namely measurement noise and the tuning parameter
β. We note that because both terms in (15) can be thought of
as representing Gaussian noise with identity covariance and the
transition model A is invariant over iterations i, all matrix in-
versions required by the Kalman smoother can be precomputed.
As a result, each iteration requires on the order of N matrix
multiplications.

D. Convergence

Next we consider the practical and theoretical convergence
of the proposed framework. To begin, we present the optimality
conditions and the means with which we can in practice imple-
ment convergence checks. The derivations are omitted, as they
closely follow Section 3.3 of [15]. The optimality conditions for
the proposed framework are given by:

0 = x̂ − ẑ
0 = ŵ −A(ẑ)

}
Primal Feasibility

0 ∈ ∂

∂x̂
L(y | x̂) + λ̂

0 ∈ ∂

∂ŵ
βφ(ŵ) + α̂

0 = λ̂+ Ã(α̂)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Dual Feasibility (16)

where ∂/∂· is the subgradient operator (or gradient when
defined, in which case ∈ becomes an equality) and
where Ã(A)n = An − DT An+1 for n = 1, . . . , N − 1 and
Ã(A)N = AN for A ∈ RK×N . The primal feasibility condi-
tions ensure that our ẑ preserves the desired relationship be-
tween x̂ and ŵ, and the dual feasibility conditions serve the
purpose of ensuring that the optimal Lagrange multipliers are
such that x̂ and ŵ jointly minimize L and φ.

Using these optimality conditions, we can derive the primal
and dual residuals:

r
(i)
1 = x(i) − z(i)

r
(i)
2 = w(i) −A(z(i))

}
Primal Residuals

s
(i)
1 = ρÃ(w(i) − w(i−1))

s
(i)
2 = ρ(z(i) − z(i−1))

}
Dual Residuals (17)

where primal feasibility is achieved when r(i)
j = 0 and dual fea-

sibility is achieved when s(i)
j = 0 for all j ∈ {1, 2}. In practice,

we declare the algorithm converged when ||r(i)
j ||F ≤ εprij and

||s(i)
j ||F ≤ εdualj for all j ∈ {1, 2}, with the thresholds given by:

εpri1 = εrel max{||x(i) ||F , ||z(i) ||F } + εabs
√
KN

εpri2 = εrel max{||w(i) ||F , ||A(z(i))||F } + εabs
√
KN

εdual1 = εrel ||λ(i) ||F + εabs
√
KN

εdual2 = εrel ||α(i) ||F + εabs
√
KN (18)

where εrel (relative tolerance) and εabs (absolute tolerance) are
small positive parameters.

In general, ADMM does not guarantee convergence for more
than two optimization variables [26]. As such, it is not im-
mediately clear that our ADMM framework would guarantee
convergence given that it optimizes over x, w, and z. As it turns
out, for the particular version of consensus ADMM that we are
proposing, we can guarantee convergence under the same mild
conditions required in standard ADMM.

Theorem 1: Given an observation y, when L(y | ·) and φ(·)
are closed, proper, and convex functions, the ADMM algorithm
given by (10) and (11) converges to the solution of (9), i.e.,
(x(i) ,w(i) , z(i)) → (x̂, ŵ, ẑ) as i→ ∞.

The proof of Theorem 1 is based on a consensus ADMM
formulation presented in section 5 of [27] and is given in detail
in Appendix B.

IV. APPLICATIONS

A. State-Space Model of Learning

We begin by demonstrating how the ADMM framework can
be applied to a problem with a highly non-linear multimodal
measurement model. In the state-space model of learning [28],
the system model is a traditional state-space Gauss-Markov pro-
cess, where the state represents an unobservable cognitive state
that represents a subject’s ability to perform a task over time.
The corresponding measurement model provides a statistical
relationship between the underlying state and the observed task
performance for a given trial.

We define X ∈ R1×N to be the cognitive state (withK = 1),
whereN represents the number of trials conducted. The system
model is given by:

Xn = κXn−1 + γ + Vn (19)

where κ ∈ [0, 1] is a forgetting factor, γ ∈ R+ is a positive
bias that represents a tendency for the cognitive state to in-
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crease with time, and Vn ∼ N (0, σ2
V ) is noise in the system

model.
Using the state-space model of learning pertaining with mul-

tiple behavioral and neurophysiological measures, we assume
that each of theN trials has an associated binary success/failure
outcome, a reaction time, and neural spiking behavior. As such,
each observation is given by a triplet Yn = (Bn,Rn ,Sn ) ∈
{0, 1} × R × {0, 1}J , where Bn is a binary random variable
indicating whether or not the trial was completed successfully,
Rn is the log of the subject’s reaction time to complete the task,
and Sn is a length J point process that indicates whether or
not there was neural spiking activity in each discrete Δt time
window.

Each of the three observation modalities is associated with
an appropriate statistical model. First, the binary success/failure
outcomes obey a Bernoulli probability model:

P (Bn = bn | Xn = xn ) = pbnn (1 − pn )1−bn (20)

where pn is given by a logistic function that maps the cognitive
state between 0 and 1:

pn =
exp(ν + ηxn )

1 + exp(ν + ηxn )
(21)

where ν, η ∈ R are model parameters.
Next, the reaction time obeys a log-normal probability model,

with:

Rn ∼ N (ψ + ωXn, σ
2
R ) (22)

where ψ ∈ R is the estimated initial log reaction time, ω ∈ R−
is negative to ensure that the reaction time tends to decrease
with an increasing cognitive state and σ2

R represents the level of
stochasticity in the relationship between the cognitive state and
reaction time.

Lastly, the neural spiking activity is modeled as a point
process (as in equation 2.6 of [29]), with the negative log-
probability of a given set of spikes given by:

− log P (Sn = sn | Xn = xn )

=
J∑

j=1

− log(Λn,j )sn,j + Λn,jΔt (23)

where sn,j ∈ {0, 1} is the jth bit of sn and log Λ is the con-
ditional intensity function, given by a generalized linear model
[30]:

log Λn,j = ξ + axn +
M∑

m=1

cmsn,j−m (24)

where ξ ∈ R gives a base intensity level, a ∈ R determines
the effect of the cognitive state on the spiking intensity, and
c = (c1 , . . . , cM ) ∈ RM accounts for the refractory period in
neural spiking, i.e., the fact that it is unlikely to see spiking
activity in neighboring bins. The point process model given by
(23) represents a discrete approximation of the negative log-
likelihood for an inhomogeneous Poisson process where the
rate in trial n and time j is Λn,j .

Next we adapt the state-space model of learning to the
ADMM framework. We begin by considering the negative log-

likelihood of the observations given the underlying cognitive
state. We note that not only are the observations temporally
conditionally independent given a sequence of cognitive states,
but each of the three observations within a trial is conditionally
independent given the cognitive state corresponding with that
trial:

L(y | x) =
N∑

n=1

Ln (yn | xn )

=
N∑

n=1

LBn
(bn |xn ) + LRn

(rn |xn ) + LSn
(sn | xn )

(25)

where the negative log-likelihoods LBn
:= − log pBn |Xn

,
LRn

:= − log fRn |Xn
, and LSn

:= − log pSn |Xn
are defined to

be the negative log of the appropriate pdf/pmf corresponding
with the respective observations. It is important to note that L
is indeed convex. Considering this is not immediately obvious,
it is shown in Appendix D.

Next we consider the system model. By definingWn = Xn −
κXn−1 = γ + Vn withW0 = X0 , we get thatWn ∼ N (γ, σ2

V ),
i.e., eachWn is distributed iid Gaussian. Thus, our negative log-
prior is given by:

φ(w) = − log
N∏

n=1

N (wn ; γ, σ2
V )

∝
N∑

n=1

(wn − γ)2

2σ2
V

(26)

where N (x;μ, σ2) gives the value of a normal distribution with
mean μ and variance σ2 evaluated at x. Additionally, under this
definition of W we get that the transition matrix D is in fact
just a scalar, namely κ ∈ R.

Plugging L, φ, and A into equations (12), (14), and (15), we
obtain the update equations for solving the state-space model
of learning problem. Beginning with the measurement model
update, as a result of its separability across trials, each update
decomposes into N univariate convex minimization problems.
As such, these N problems can be solved in parallel using a
convex solver such as CVX [31]. For the system model update,
we note that because (14) is separable over n = 1, . . . , N , the
update is reduced to N quadratic minimizations that can be
solved in closed form. Given that the density for W is assumed
to be fully known, we set the tuning parameter β = 1. The
details of these updates can be found in Appendix C.

We demonstrate the state-space model of learning solu-
tion on simulated data with N = 25, using parameters from
Section V-A of [21]. The proposed method is compared with the
fixed-interval smoother (FIS) detailed in [21] and a sequential
Monte Carlo (SMC) method. In particular, we develop a par-
ticle smoother using the forward-filtering backward-sampling
technique with systematic resampling at each step [32]. For the
ADMM method, we set ρ = 30 and limit the procedure to 25
iterations, i.e., x̂ := x(25) . For the SMC method, we use 100
particles. In Table III we look at the average root-mean-square
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Fig. 2. Sample realization (blue) for Gaussian state-space model (left) and sparse-variation state-space model (right), along with the estimates using ADMM
(red), FIS (green), and SMC (purple). While the Gaussian states are well estimated by all three methods, the ADMM approach utilizing the �1 prior yields the only
estimate that captures the piecewise constant nature of the sparse-variation states.

TABLE III
PERFORMANCE METRICS FOR THE PROPOSED METHOD (ADMM),

FIXED-INTERVAL SMOOTHER (FIS), AND SEQUENTIAL MONTE CARLO (SMC)
AVERAGED OVER 50 TRIALS WITH THE GAUSSIAN STATE-SPACE MODEL

GIVEN BY (19) AND THE STATE-SPACE MODEL WITH SPARSE

VARIATIONS GIVEN BY (27)

error (RMSE) and average runtime for each method over 50
trials, where for a given realization x and a given estimate
x̂, RMSE(x̂) = ||x̂ − x||2/

√
N . We note that the proposed

method is both most efficient and most accurate in the RMSE
sense. While the SMC method would presumably benefit from
a larger number of particles, we see that even with limited sam-
ples, it is very computationally intensive. While the difference
in RMSE is negligible across all 3 methods, it is worth noting
that each method obtains a fundamentally different estimate. To
be specific, the proposed method gives the MAP estimate in
the limit of large iterations, while the other methods yield con-
ditional expectations of the states given the entire observation
sequence. In the case of the FIS, the estimate is the conditional
expectation under a Gaussian approximation of the posterior.
The SMC method, on the other hand, yields the true conditional
expectation in the limit of large particle count.

It should be noted that in the case of a Gaussian state space, the
problem formulations given by (8) and (9) are nearly equivalent.
In particular, it is possible to omit the consensus variable and
modify the constraint such that W = X. In such a scenario,
the measurement model update would remain the same and
the system model update would be solvable with a Kalman
smoother. Thus, we further demonstrate the utility of our method
by considering a second state-space model with sparse variations
where such an approach is not possible. We simulate a state-
space model with sparse variations by defining Xn = Xn−1 +
Vn with Vn obeying a commonly used sparsity inducing mixture
model [33]:

Vn =

{
0 w.p. p

σUn w.p. 1 − p
(27)

where p ∈ [0, 1] is a probability, σ ∈ R+ is a positive constant,
and we define Un ∼ χ2

2 as i.i.d. Chi-Squared random variables
with two degrees of freedom. This model represents a scenario
supported by neurophysiological findings [34], [35] wherein
infrequent, discontinuous changes in neural activity arise.

We again conduct 50 trials, setting N = 50, p = 0.9, and
σ = 0.1, and estimate the state using ADMM, FIS, and SMC
approaches. For the ADMM approach, we note that the true
system model is no longer log-concave, so we instead use a
sparsity inducing �1 regularizer, i.e., we defineφ(w) = β ||w||1 .
As such, we set β = 15, noting that is no longer determined
by the model and must be treated as a tuning parameter. The
resulting system model update is given by:

w(i+1) = argmin
w

ρ

2

∣∣∣∣w̃(i) − w
∣∣∣∣2

2 + β ||w||1 .

This problem is known as the LASSO problem and may be
efficiently solved by applying a soft threshold operation to w(i)

at each iteration [36].
Given the model mismatch, we observe that the proposed

method takes longer to converge on a desirable estimate, and
thus increase the maximum number of iterations to 75. For the
FIS, given that there is no systematic approach to obtain an esti-
mate with sparse variations, we again utilize a Gaussian approx-
imation, with the noise at each step being modeled by a Gaus-
sian distribution with zero-mean and variance Var(Un ) = 4σ2 .
The SMC method is given the benefit of using the true under-
lying system model when generating samples on the forward
pass. However, when performing the backward pass on sam-
ple xin with respect to a fixed x̂n+1 , we get that when xin >
x̂n+1 , the likelihood fXn + 1 ,Y |Xn

(x̂n+1 ,y | xin ) = 0, causing
the smoother to continually lower x̂n for n = N,N − 1, . . . , 1
until the smoother fails (i.e., xik > x̂k+1 for all i for some
k ∈ {1, . . . , N}). As such, we only utilize the forward pass
particle filter. Referring to Table III for results, we note that
the proposed method again outperforms the other methods in
the RMSE sense. From a computational perspective, the 3X in-
crease in iterations causes the ADMM approach to take slightly
longer than the FIS, though both remain significantly more effi-
cient than the SMC method.

B. Spectrotemporal Pursuit

Next we demonstrate application of the ADMM framework
to the method of spectrotemporal pursuit, originally presented
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in [11]. Spectrotemporal pursuit formulates the problem of es-
timating time varying frequency coefficients as a compressive
sensing problem. We define Y ∈ RP ×N to be a matrix version
of an observed time series of length PN , where each column
of Y gives a length P window of the time series. Next, we de-
fine X ∈ RK×N to be a matrix of frequency coefficients, with
each column Xn ∈ RK representing the frequency coefficients
corresponding with the time window Yn ∈ RP . By defining X
to be real valued, it is implied that the frequency coefficients
are in rectangular form, and thus a frequency resolution of K/2
is achieved. Using this representation, we define the quadratic
measurement model:

L(y | x) =
N∑

n=1

||yn − Fnxn ||22 (28)

where Fn ∈ RP ×K is an inverse Fourier matrix, i.e., (Fn )p,k :=
cos(2π((n− 1)P + p) k−1

K and (Fn )p,k+ K
2

:= sin(2π((n−
1)P + p) k−1+K/2

K for p = 1, . . . , P andk = 1, . . . ,K/2. In this
sense we can view the spectrotemporal estimation problem as
a traditional linear measurement with Gaussian noise problem.
As such, it is well defined when P ≥ K, which is consistent
with the well known fact that the number of frequency coeffi-
cients associated with a time series can not exceed the number
of samples.

The method of spectrotemporal pursuit removes this con-
straint by introducing a sparsity inducing prior on the frequency
coefficients, paralleling the approaches in compressive sensing
used to estimate the coefficients underlying a system with an
underdetermined set of observations. In particular, spectrotem-
poral pursuit imposes a group-sparsity prior on the first differ-
ences of the frequency coefficients. Letting Wn = Xn − Xn−1
(i.e., D is the identity matrix), we define the system model:

φ(w) =
K∑

k=1

(
N∑

n=1

w2
k,n

) 1
2

. (29)

We can view this function as the �1-norm of a vector whose
entries are the �2-norms of the rows of the argument. As such,
φ(w) is small when only a small number of the rows of w are
non-zero. Furthermore, the rows that are non-zero should have
a small �2-norm. Application of this function to the differences
of the frequency coefficients over time ensures that throughout
a given time series, most frequency coefficients do not vary, and
those that do vary are varying smoothly. This time-frequency
characterization is known to occur in certain biological time-
series. Thus, spectrotemporal pursuit utilizes this knowledge to
obtain significantly denoised spectrotemporal estimates while
avoiding the time/frequency resolution trade-off without neces-
sitating a sliding window approach. This is again reminiscent
of compressive sensing, which makes strong claims regarding
the recoverability of a set of coefficients with underdetermined
measurements so long as the coefficients are sufficiently sparse.

The spectrotemporal pursuit solution initially proposed in
[11] is an iteratively reweighted least squares (IRLS) algorithm.
While the IRLS algorithm is also exact and offers convergence
guarantees, it requires inversion ofN ×N andK ×K matrices

N times per iteration of the algorithm. Furthermore, design of
the state-covariance matrix obfuscates the problem and requires
careful thought when modifying the system model.

The proposed ADMM framework yields a straightforward
solution to the spectrotemporal pursuit problem. First, plugging
L into equation (12) yields:

x(i+1)
n = argmin

xn

||yn − Fnxn ||22 +
ρ

2
||xn − x̃(i)

n ||22

= argmin
xn

||xn + Cnb(i)
n ||2Cn

= −Cnb(i)
n (30)

where Cn := (FT
n Fn + ρ

2 I)
−1 and b(i)

n := − 1
2 (FT

n yn +
ρx̃(i)

n ). We note that when P < K, FT
n Fn is rank deficient

and it is our choice of ρ that ensures the update is well formed.
Also, it is important to note that each Cn for n = 1, . . . , N
can be computed once at initialization, as they do not change
throughout iterations.

Next, placing the group-sparsity prior in equation (14) shows
that the system model update is given by a standard group-lasso
problem:

w(i+1) = argmin
w

||w̃(i) − w||22 +
2β
ρ

K∑

k=1

(
N∑

n=1

w2
k,n

) 1
2

.

(31)

Furthermore, this special case with an orthonormal regressor
matrix (i.e., the identity) yields a closed form solution, namely a
row-wise shrinkage operator applied to w̃(i) [24]. The shrinkage
amount is proportional to the tuning parameter β, with larger β
yielding a smaller number of non-zero rows in w.

We demonstrate the ADMM solution for spectrotempo-
ral pursuit on a simulated example recreated from the origi-
nal paper [11]. Let ỹ ∈ RM be the vectorized version of y
with M = NP and yn = [ỹ(n−1)P +1 , ỹ(n−1)P +2 , . . . , ỹnP ]T

for n = 1, . . . , N . Then, we consider the signal:

ỹm = 10 cos8(2πf0m) sin(2πf1m)

+ 10 exp
(

4
m−M

M

)
cos(2πf2m) + vm (32)

where f0 = 0.04 Hz, f1 = 10 Hz, f0 = 11 Hz, and vm ∼
N (0, 1) iid for m = 1, . . . ,M . Letting the sampling frequency
be fs = 125 Hz and M = 7500 gives a simulated time-series
600 seconds in duration. We note thaty contains a sparse number
of active frequency components, and the frequency components
that are active are modulated over time in a smooth fashion. Ad-
ditionally, the active frequency components f1 and f2 are chosen
to be in neighboring frequencies, creating an increased difficulty
when trying to distinguish their respective contributions.

The top row of Fig. 3 shows time-frequency estimates of the
simulated time-series using traditional methods and spectrotem-
poral pursuit. First, we observe that the standard spectrogram
(Fig. 3 A) suffers from significant spectral leakage and is unable
to clearly distinguish between the 10 Hz and 11 Hz frequency
components. For the spectrotemporal pursuit estimate (Fig. 3 B)
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Fig. 3. Spectrotemporal decompositions for simulated time series given by (32) (A/B) and single channel EEG recording (C/D). A: Traditional spectrogram
with NFFT = 2fs , no overlap, and Hanning window. B: Spectrotemporal pursuit estimate with K = 2fs , P = K/8. C: Traditional spectrogram with
NFFT = 1024, 75% overlap and Hanning window. D: Low-Rank Spectrotemporal Decomposition with K = 1024 and P = K/4.

we select P < K, meaning that the number of samples in each
time window is less than the number of frequency bins. As such,
we are effectively increasing the temporal resolution while still
maintaining the spectral resolution without the use of overlap-
ping windows. Because this would in general be an underdeter-
mined problem, the group-sparsity prior is needed to ensure the
problem has a unique solution. In addition to increased tempo-
ral resolution, we witness that spectrotemporal pursuit enables
the contributions from f1 and f2 to be clearly distinguishable.
Further benefits of this approach to spectrotemporal decompo-
sitions are given in detail in [11]. Here, we are proposing an
algorithm that offers improvements in efficiency, modularity,
and interpretability. In particular, we witness a roughly 10×
speedup per iteration on the same size data when using the
ADMM framework rather than IRLS.

To further illustrate the modularity of the proposed frame-
work, we next demonstrate that we can utilize an entirely differ-
ent system model with a minor adjustment to a single update.
Specifically, we consider a low-rank spectrotemporal decompo-
sition (LRSD) which substitutes the nuclear norm for the group
sparsity prior [37]. As such, the LRSD estimate is obtained by
substituting the system model update given by (31) with:

w(i+1) = argmin
w

||w̃(i) − w||2F + β||w||∗ (33)

where || · ||∗ is the nuclear norm, given by the sum of the singular
values of the argument. Conveniently, this update is known as the
matrix lasso and yields a straightforward solution via singular
value soft thresholding [38]. By making a simple adjustment to
the means by which w(i) is updated, we are able to obtain an
entirely different spectrotemporal decomposition.

This point is illustrated by the bottom row of Fig. 3 where we
demonstrate the LRSD on human single-channel EEG data us-
ing adhesive flexible sensors [39]. The data in question contains
a 30-second recording in which the subject’s eyes are closed
at the 10 second mark, at which point we would expect to see

increased energy in the alpha band (10–12 Hz). The change
point nature of the recording suggests that the group sparsity
prior on the dynamics, which enforces smoothness across time,
is ill-suited for this recording, and the traditional spectrogram
(Fig. 3 C) suffers significantly from noise. By not explicitly
enforcing smoothness in time, the low-rank enforcing nuclear
norm prior (Fig. 3 D) accommodates the change point and is
able to significantly suppress activity outside of the alpha band.
Similarly to the spectrotemporal pursuit example, we are able
to set P < K and achieve equivalent temporal resolution to the
spectrogram without utilizing overlapping windows or sacrific-
ing spectral resolution.

Remark 2: Comparisons with other methods are intention-
ally omitted in this section given that there is no systematic ap-
plication to these non-Markov problem formulation. While the
original problem proposed in equation (7) does not lend itself to
an obvious solution for the discussed non-Markov models, the
consensus ADMM formulation given by (11) may be solved in a
straightforward manner. In particular, we note that the EKF and
UKF have no clear extensions for non-Markov scenarios and the
and the use of sampling based methods for such models would
require drawing samples of group-sparse or low-rank matrices.

V. DISCUSSION

We have presented a unified framework for solving a broad
class of dynamic modeling problems. The proposed method
can be applied to systems with non-linear measurements and/or
non-Markov dynamics. As demonstrated on two applications,
our framework can be applied in a straightforward manner to
acquire efficient solutions to problems that may otherwise re-
quire complex or approximate solutions. Furthermore, we have
shown that this algorithm will converge on the true MAP es-
timate of the latent signal in the limit of large iterations. With
this provably accurate algorithm comes a mathematical justi-
fication for an intuitive approach to dynamic time-series es-
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timation, namely iteratively computing estimates based on the
measurement model and system model and then averaging them
in the appropriate sense.

There are a number of extensions to this framework still
to be explored. The most glaring shortcomings are the inability
to conduct the estimation procedure causally and the necessity to
know model parameters a priori. Regarding the former, we note
the use of homotopy schemes for causal estimation that gradu-
ally incorporate new observations into the solution [40], [41].
Additionally, there has been recent research investigating algo-
rithms for performing ADMM in an online fashion [42], [43] that
could potentially be leveraged by our framework. To address the
latter, expectation-maximization (EM) techniques can be built
into the ADMM iterations in order to estimate model param-
eters jointly with the desired latent time-series. In that regard,
the E-step, which requires sampling from the posterior distri-
bution, is typically the bottleneck. To address that, Langevin
based methods and stochastic gradient descent methods can be
used to efficiently sample from the posterior distribution [44].
Identifying sufficient conditions on mixing times for generating
approximately i.i.d. posterior samples for the M-step could be
the subject of future in-depth work. We note that while there
exist sample based methods for estimating model parameters
[19, Sec. IV], these methods can be computationally prohibitive
as witnessed in Table III.

Lastly, we note that there is considerable interest in state-
space estimation where the observations or system are subject
to noise from heavy-tailed distributions such as the Student’s t or
Cauchy distributions [45], [46], which are not log-concave. Re-
cent literature has shown that ADMM can be shown to converge
under even milder conditions than those assumed by Theorem 1
[47], [48]. Given that both the Student’s t and Cauchy distri-
butions are log-quasi-concave, continuous, and possess a single
local maximum, we could reasonably expect convergence of our
framework to the MAP estimate in such a scenario. This topic
provides interesting opportunities for future experimental and
theoretical work.

APPENDIX A
DERIVATION OF SCALED FORM

We will demonstrate the derivation of the scaled form of the
measurement model update only, noting that the derivation for
the other updates follows almost identical steps. Consider the
original measurement model update:

x(i+1) = argmin
x

(
N∑

n=1

Ln (yn | xn )

)
+ 〈λ(i) ,x − z(i)〉

+
ρ

2

∣∣∣
∣∣∣x − z(i)

∣∣∣
∣∣∣
2

F
. (34)

For ease of notation, the superscript (i) is omitted for the remain-
der of this appendix. Using the definition of the inner product
and Frobenius norm, we can break up the second and third terms

across into sums and simplify as follows:

x(i+1) = argmin
x

N∑

n=1

Ln (yn | xn ) + λTn (xn − zn )

+
ρ

2
(xn − zn )T (xn − zn )

= argmin
x

N∑

n=1

Ln (yn | xn ) +
ρ

2
xTn xn

+ (λn − ρzn )T xn

= argmin
x

N∑

n=1

2
ρ
Ln (yn | xn ) + xTn xn

− 2
(
zn − λn

ρ

)T

xn . (35)

Defining x̃n = zn − λn

ρ as in Section III-A, we note that x̃n
does not depend on x, enabling us to complete the square and
simplify as follows:

xn = argmin
x

N∑

n=1

2
ρ
Ln (yn | xn ) + xTn xn − 2x̃Tn xn

= argmin
x

N∑

n=1

2
ρ
Ln (yn | xn ) + xTn xn − 2x̃Tn xn + x̃Tn x̃n

= argmin
x

N∑

n=1

2
ρ
Ln (yn | xn ) + (x̃n − xn )T (x̃n − xn )

= argmin
x

(
N∑

n=1

Ln (yn | xn )

)
+
ρ

2
||x − x̃||2F , (36)

as was to be shown.

APPENDIX B
PROOF OF THEOREM 1

Consider the problem in its original form:

(x̂, ŵ) = argmin
x,w

L(y | x) + βφ(w)

s.t. w = A(x). (37)

The goal is to show that there is an equivalent two-block ADMM
problem whose updates match those given by (11). To do so
we define the variable Q := [XT ,WT ]T ∈ R2K×N (X,W ∈
RK×N ) and the function g(Q) := L(y | X) + βφ(W). Next,
we define Z := [ZT

X ,Z
T
W ]T ∈ R2K×N and the function:

h(Z) =

{
0 A(ZX ) = ZW

∞ A(ZX ) �= ZW
. (38)
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Using these newly defined terms, we can write (37) equivalently
as:

(q̂, ẑ) = argmin
q,z

g(q) + h(z)

s.t. q − z = 0. (39)

Note that if q = [xT ,wT ]T is such that w �= A(x) (the con-
straints in (37) are not satisfied) and z is such that q − z = 0
(the constraints (39) are satisfied), then h(z) = ∞ and (q, z) are
not the minimizers of (39). To solve this problem with ADMM,
we first find augmented Lagrangian:

Lρ(q, z,γ) = g(q) + h(z) + 〈γ,q − z〉 +
ρ

2
||q − z||2F (40)

with Lagrange multiplier γ = [λT ,αT ]T ∈ R2K×N (λ,α ∈
RK×N ). As a result, we get the following update equations:

q(i+1) = argmin
q

Lρ(q, z(i) ,γ(i))

z(i+1) = argmin
z

Lρ(q(i+1) , z,γ(i))

γ(i+1) = γ(i) + ρ(q(i+1) − z(i+1)). (41)

Next we show that the update equations given by (41) are equiv-
alent to those given by (11).

First, consider the q update:

q(i+1) = argmin
q

Lρ(q, z(i) ,γ(i))

= argmin
q

g(q) + 〈γ(i) ,q − z(i)〉 +
ρ

2
||q − z(i) ||2F

= argmin
[xT ,wT ]T

L(y | x) + βφ(w)

+
[
λ(i)

α(i)

]T ([
x
w

]
−
[
z(i)
x

z(i)
w

])

+

∣∣∣∣∣

∣∣∣∣∣

[
x
w

]
−
[
z(i)
x

z(i)
w

]∣∣∣∣∣

∣∣∣∣∣

2

F

=
[

x(i+1)

w(i+1)

]
(42)

where x(i+1) and w(i+1) are given by:

x(i+1) = argmin
x

L(y | x) + 〈λ(i) ,x − z(i)
x 〉 + ||x − z(i)

x ||2F
(43)

w(i+1) = argmin
w

βφ(w) + 〈α(i) ,w − z(i)
w 〉 + ||w − z(i)

w ||2F
(44)

and can be found independently of each other.

Next, consider the z update:

z(i+1) = argmin
z

Lρ(q(i+1) , z,γ(i))

= argmin
z

h(z) + 〈γ(i) ,q(i+1) − z〉

+
ρ

2
||q(i+1) − z||2F

= argmin
[zTx ,zTw ]T

h(z) + 〈λ(i) ,x(i+1) − zx〉

+
ρ

2
||x(i+1) − zx ||2F

+ 〈α(i) ,w(i+1) − zw 〉
+
ρ

2
||w(i+1) − zw ||2F

= argmin
zx

〈λ(i) ,x(i+1) − zx〉

+
ρ

2
||x(i+1) − zx ||2F

+ 〈α(i) ,w(i+1) −A(zx)〉
+
ρ

2
||w(i+1) −A(zx)||2F

=

[
z(i+1)
x

A(z(i+1)
x )

]

where z(i+1)
x is given as the solution to (15), i.e., the consensus

update for our target problem, and the second to last equality
follows from the fact that h(z) is infinite if zw �= A(zx), so we
can treat the problem as a single variable optimization problem.

Next we can substitute these results into the equations for the
q update to obtain:

w(i+1) = argmin
w

βφ(w) + 〈α(i) ,w −A(z(i)
x )〉

+ ||w −A(z(i)
x )||2F (45)

which is the (unscaled) update equation (14) for w in the original
formulation, where z(i)

x in this formulation corresponds with
z(i) in the original formulation. The x portion of the q remains
unchanged from (43), which is equivalent to the unscaled update
equation (12) for x in the original formulation.

Next, we can decompose the matrix multiplication in the same
way as above to show that:

γ(i+1) =

[
λ(i+1)

α(i+1)

]
(46)

where λ(i+1) and α(i+1) are given by the original updates in
(11).

Thus, we have shown that directly solving (39) using ADMM
yields the proposed updates detailed in the body of the paper.
As such, we will show that the ADMM solution to (39) is con-
vergent. By assumption,L and φ are closed, proper, and convex,
and hence, so is their sum g. To show that h is convex, we note
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that this is an indicator function on the set H := {(zX , zW ) :
A(zX ) = zW } ⊂ R2 , thush is convex if and only ifH is convex
[49, Ch. 2]. Suppose z1 = [z1

x
T
, z1

w
T ]T and z2 = [z2

x
T
, z2

w
T ]T

are such that A(z1
x) = z1

w and A(z2
x) = z2

w , i.e., z1 , z2 ∈ H .
Then, if we take a convex combination zα := αz1 + (1 − α)z2

for α ∈ [0, 1], we get:

zαw = αz1
w + (1 − α)z2

w

= αA(z1
x) + (1 − α)A(z2

x)

= A(αz1
x + (1 − α)z2

x)

= A(zαx ). (47)

Thus, we see that z1 , z2 ∈ H ⇒ zα ∈ H , i.e., H , and there-
fore h, are convex. It then follows from Section 3.2.1 of [15]
that the ADMM solution for (39) is convergent, as was to be
shown. �

APPENDIX C
STATE-SPACE MODEL OF LEARNING UPDATES

We begin by deriving expressions for the negative log-
likelihoods for each of the observations:

LBn
(bn | xn ) = − log pBn |Xn

(bn | xn )

= − log pbnn (1 − pn )1−bn

= −bn log
eν+ηxn

1+eν+ηxn
−(1−bn ) log

1
1+eν+ηxn

∝ log
(
1 + eν+ηxn

)− bnηxn

LRn
(rn | xn ) = − log fRn |Xn

(rn | xn )

= − log
1√

2πσ2
R

exp

(
− (rn − ψ − ωxn )2

2σ2
R

)

∝ (rn − ψ − ωxn )2

2σ2
R

LSn
(sn | xn ) = − log pSn |Xn

(sn | xn )

= − log exp

⎛

⎝
J∑

j=1

[log(Λn,j )sn,j − Λn,jΔt]

⎞

⎠

= −
J∑

j=1

(
ξ + axn +

M∑

m=1

cmsn,j−m

)
nn,j

+
J∑

j=1

exp

(
ξ + axn +

M∑

m=1

cmsn,j−m

)
Δt

∝ −axn
J∑

j=1

nn,j

+
J∑

j=1

exp

(
ξ + axn +

M∑

m=1

cmsn,j−m

)
Δt

= Δt exp (ξ + axn )
J∑

j=1

exp

(
M∑

m=1

cmsn,j−m

)

− axn

J∑

j=1

sn,j

These expressions can be plugged into equation (25) to obtain
the measurement model update equation, which can in turn be
solved using Newton’s method.

Next, the system model update can be solved in closed form:

w(i+1) = argmin
w

φ(w) +
ρ

2

∣∣∣∣w − w̃(i)
∣∣∣∣2

2

= argmin
w

N∑

n=1

(
(wn − γ)2

2σ2
V

+
ρ

2
(wn − w̃(i)

n )2
)

where w̃(i)
n := z

(i)
n − κz

(i)
n−1 − α

(i)
n /ρ. Thus, we can solve for

each wn separately:

w(i+1)
n = argmin

wn

(wn − γ)2

2σ2
V

+
ρ

2
(wn − w̃(i)

n )2

= argmin
wn

(
1

2σ2
V

+
ρ

2

)
w2
n −

(
γ

σ2
V

+ ρw̃(i)
n

)
wn

= argmin
wn

⎛

⎝wn −
γ
σ 2
V

+ ρw̃
(i)
n

1
σ 2
V

+ ρ

⎞

⎠
2

=
γ
σ 2
V

+ ρw̃
(i)
n

1
σ 2
V

+ ρ
.

Finally, given its relatively low dimensionality, we can effi-
ciently solve the consensus update in closed form by posing it
as a least squares problem. First, we note that A(z) = Gz when
we define:

G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0 0

−κ 1 0 . . . 0 0

0 −κ 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 0

0 0 0 . . . −κ 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(48)

with G ∈ RN×N . Thus, we have:

z(i+1) = argmin
z

||z − z̃(i)
x ||2F + ||Gz − z̃(i)

w ||2F . (49)

Taking the gradient of the RHS and setting to zero yields:

z(i+1) = (I + GT G)−1(z̃(i)
x + GT z̃(i)

w ). (50)

Given that G is known a-priori, we can find (I + GT G)−1 once
and each consensus update becomes a matrix multiplication
problem.
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APPENDIX D
CONVEXITY STATE-SPACE MODEL OF LEARNING NEGATIVE

LOG-LIKELIHOOD

Given that L is the sum of the negative log-likelihoods for
each of the observation modalities as in (25), it is sufficient to
show that they are each convex in xn , which is made easier
by use of the simplifications derived in Appendix C. Noting
that addition of a constant does not affect convexity, we can
assess the final simplification provided in each case. As such,
we see that LBn

(bn | xn ) is the sum of a term that is linear
in xn and a special case of the log sum exponential (LSE)
function with an added auxiliary variable constrained to equal
zero (giving e0 = 1). Given the convexity of LSE, its sum with
a linear term is also convex, and thus LBn

(bn | xn ) is convex.
Next, LRn

(rn | xn ) is quadratic in xn and thus convex. Finally,
LSn

(sn | xn ) is the sum of a term that is linear in xn and a term
that is exponential in xn , both of which are convex. As a result,
LBn

(bn | xn ), LRn
(rn | xn ), and LSn

(sn | xn ) are all convex
in xn for any (bn , rn , sn ) ∈ {0, 1} × R × {0, 1}J , and thus so
is their sum L.
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