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A B S T R A C T

Background: The synchronous ionic currents that give rise to neural oscillations have complex influences on
neuronal spiking activity that are challenging to characterize.
New method: Here we present a method to estimate probabilistic relationships between neural spiking activity
and the phase of field oscillations using a generalized linear model (GLM) with an overcomplete basis of circular
functions. We first use an L1-regularized maximum likelihood procedure to select an active set of regressors from
the overcomplete set and perform model fitting using standard maximum likelihood estimation. An information
theoretic model selection procedure is then used to identify an optimal subset of regressors and associated
coefficients that minimize overfitting. To assess goodness of fit, we apply the time-rescaling theorem and
compare model predictions to original data using quantile-quantile plots.
Results: Spike-phase relationships in synthetic data were robustly characterized. When applied to in vivo hip-
pocampal data from an awake behaving rat, our method captured a multimodal relationship between the spiking
activity of a CA1 interneuron, a theta (5–10 Hz) rhythm, and a nested high gamma (65–135 Hz) rhythm.
Comparison with existing methods: Previous methods for characterizing spike-phase relationships are often only
suitable for unimodal relationships, impose specific relationship shapes, or have limited ability to assess the
accuracy or fit of their characterizations.
Conclusions: This method advances the way spike-phase relationships are visualized and quantified, and cap-
tures multimodal spike-phase relationships, including relationships with multiple nested rhythms. Overall, our
method is a powerful tool for revealing a wide range of neural circuit interactions.

1. Introduction

Neural oscillations in extracellularly recorded signals arise from
repeated, synchronous transmembrane currents across a population of
neurons (Buzsáki and Draguhn, 2004; Buzsáki et al., 2012; Herreras,
2016; Jones, 2013; Pesaran et al., 2018). These currents have the ability
to create temporal windows in which neurons are more or less depo-
larized. Consequently, the probability of observing spiking activity in
neurons affected by these currents often stereotypically changes ac-
cording to the phase of the oscillatory signal. However, the relationship
between neural spiking activity and the phase of an oscillation is not
always straightforward for a number of reasons. In particular, neurons
often receive a convergence of different inputs that can have conflicting
influences upon their depolarization. For example, a neuron that con-
sistently receives a large number of synchronized excitatory inputs from
one source might also receive behaviorally dependent inhibitory inputs

from another source that affect the timing and probability of its spiking
activity in a complex manner. In this scenario, the spiking activity of
the neuron exhibits a dynamic relationship with the phase of the os-
cillation, which changes depending upon the behavior of the organism.
Another source of complexity and unpredictability in determining
spike-phase relationships arises from the fact that extracellularly re-
corded local field potential (LFP) and electroencephalography (EEG)
reflect spatially averaged signals that can have both local and distant
influences (Buzsáki et al., 2012; Herreras, 2016; Jones, 2013). This
means that while some neurons exhibit spiking activity closely related
to the phase of a particular oscillation, neighboring neurons might be
more or less influenced by the currents generating the oscillation, or
may not be affected at all. Thus, the relationship between neural
spiking activity and oscillatory phase cannot be assumed a priori, and
must be characterized experimentally.

By characterizing the relationship between neural spiking activity
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and the phase of a particular neural oscillation, we gain insight into the
manner in which different neurons interact to support information
processing. Since the oscillatory frequencies that manifest in a region
can be the product of repeated interactions between neurons (Buzsáki
and Draguhn, 2004; Kramer et al., 2008; Roopun et al., 2008; Sherman
et al., 2016; Whittington et al., 2000), examining the strength of spike-
phase relationships across populations of neurons can provide insight
into the degree of their mutual engagement in rhythmic circuits. For
example, certain gamma frequency oscillations arise from interactions
between principal neurons and local inhibitory interneurons (Fries
et al., 2007; Tiesinga and Sejnowski, 2009; Whittington et al., 2000). In
this scenario, the frequency of the gamma oscillation is dictated by the
decay time of inhibition, and both populations exhibit synchronized
spiking activity tightly linked to the phase of the gamma oscillation.
Identifying populations of principal cells and interneurons in a region
that exhibits strong spike-phase relationships to the same gamma fre-
quency range can thus indicate that a similar interaction is occurring. In
addition, strong spike-phase relationships across brain regions can
suggest that the rhythmic input from one region influences the spiking
activity of another, providing evidence for cross-regional interactions
(Engel and Fries, 2010; Fries et al., 2007; Fries, 2009). Thus, char-
acterizing spike-phase relationships can lead to the identification of
local and cross-regional interactions that contribute to the dynamic
information processing abilities of a region.

There are a number of methods currently implemented in neuro-
physiological studies to characterize spike-phase relationships. For
spike-phase relationships that are thought to be unimodal, researchers
often quantify the preferred phase of spiking and the strength of this
preference by calculating the circular mean θpref and the mean resultant
length vector R̄ as follows (Berens et al., 2009; Lowet et al., 2016;
Siapas et al., 2005):
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where k indexes spike times, K is the total number of spikes, and θk is
the phase of an oscillation at the time of each spike. Using the above
expressions, it is possible to assess the degree to which spiking activity
demonstrates a particular phase preference on average. This quantifi-
cation method, and other methods that similarly quantify the con-
sistency of spike-phase relationships through averages, can prove useful
when assessing the degree to which unimodal phase preferences change
across neurons or behavioral conditions (Siapas et al., 2005; Sirota
et al., 2008; Siegel et al., 2009). In addition, researchers often imple-
ment standard coherence measures to gauge consistency of spike-phase
relationships (Chalk et al., 2010; Fries et al., 2008; Pesaran et al., 2002,
2008). A spike spectrum Gspike(f) at frequency f is created from a se-
quence of spike counts over time and compared to a field potential
spectrum Gfield(f) using the following formula:
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where Gspike-field(f) is the cross-spectrum and Cspike-field(f) is the coher-
ency between the two spectra. One major pitfall of these commonly
used quantification methods, however, is that they are only applicable
to unimodal spike-phase relationships. As such, they reduce potentially
complex multimodal relationships (e.g. Skaggs et al., 1996) to single
values for phase and strength. In addition, these methods do not sta-
tistically capture the inherent discrete (e.g. binary) temporal nature of
neural spiking. Another concern is that the number of spikes in a data
set and the length of the time series can strongly bias these measures
(Lepage et al., 2011). Although several research groups have developed

methods to quantify these influences and account for them when
comparing across trials or conditions (Aoi et al., 2015; Vinck et al.,
2011, 2012), the uncertainty in the estimated relationships due to low
spike counts or small data sizes is seldom fully quantified or reported.

Several promising methods for relating neural spiking activity to
predictive variables, such as the phase of an oscillation, utilize para-
metric point process likelihood models (Barbieri et al., 2001; Czanner
et al., 2008; Eden et al., 2018; Lewis et al., 2012; Truccolo et al., 2005).
Rather than attempting to fully uncover the relationship between
spiking and the phase of a neural oscillation, these methods often aim to
predict neural spiking using a range of extrinsic covariates, including
the phase of an oscillation. By performing model-fitting with point
process maximum likelihood estimation, several useful and robust sta-
tistical methods may be implemented to both ensure goodness of fit and
to quantify uncertainty. Models and methods that do not perform (or do
not have the ability to perform) goodness of fit techniques are vulner-
able to the imposition of inaccurate relationships onto the data. For
example, a function (e.g. sine, polynomial, square) utilized by the
model to fit the data imposes a shape that can be quite different from
the true relationship (Fig. 1). In addition, when using a single function
(and not a mixture of functions), complex relationships are forced into
much simpler representations. To avoid these scenarios, the shape of
the underlying relationship would need to be known a priori so that an
appropriate function could be chosen. As described above, however, it
is not always possible nor appropriate to assume a specific spike-phase
relationship, given that neuronal engagement in larger rhythmic cir-
cuits is often unpredictable and dynamic.

In order to capture potentially complex spike-phase relationships
without any a priori information regarding the underlying relationships,
we propose the generation of a point process generalized linear model
(GLM) using an overcomplete basis set of circular functions of phase.
Specifically, we use Von Mises functions with a range of mean and
inverse variance combinations. We propose a two-step process in-
creasingly used in modern high-dimensional sparse statistical modeling
(Belloni et al., 2013; Chételat et al., 2017). We first perform regressor
selection with a penalized estimation procedure, and then perform

Fig. 1. Illustration of select methods for visualizing and quantifying spike-phase
relationships. A multimodal spike-phase relationship simulated from a mixture
of Von Mises functions is shown in black. The estimated conditional probability
of observing a spike given the phase of an oscillation using a single line function
(blue), a single Von Mises function (green), a single sine function (purple), and
7 Von Mises functions assembled with our proposed workflow (red) is shown. In
addition, we calculate the mean resultant length vector for the data, and show
the estimated strength and preferred phase using this method (orange arrow).
Our method is the only method capable of capturing the multimodal nature of
this example spike-phase relationship. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)
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maximum likelihood estimation with respect to the active set of re-
gressors previously identified. Specifically, we select an active set of
regressors from the overcomplete set by implementing an ℓ1-penalized
maximum likelihood estimation procedure and then selecting the re-
gressors with nonzero coefficients. The ability to flexibly incorporate
different numbers and combinations of regressors into the active set
renders this workflow highly adaptable to any spike-phase relationship.
In the next step, we perform standard maximum likelihood model-fit-
ting with regressors from the active set. In order to obviate overfitting,
we use model selection criteria, specifically the Akaike information
criterion (Akaike, 1974), to identify the optimal active set.

In this paper, we demonstrate a robust ability to characterize a
range of spike-phase relationships in both simulated and experimental
data. We also present novel results from the rodent hippocampus,
characterizing a multimodal interneuron relationship to both a theta
(5–10 Hz) and a nested high gamma (65–135 Hz) rhythm. These results
highlight a novel use of this method in identifying and quantifying the
temporal coordination of spike coupling to multiple, co-occurring
rhythms. Our method is thus a powerful tool for visualizing and char-
acterizing neuronal engagement in rhythmic circuits.

2. Methods

2.1. Constructing an overcomplete basis of circular functions

Characterizing the relationship between spiking and neural oscil-
latory data first requires developing a method for relating two quali-
tatively different datasets. Neural spiking data is often represented as a
point process, with action potentials occurring at discrete time points
and irregular intervals. In contrast, phase data describing neural os-
cillations is continuous and circular, with regularly repeating values
ranging from −π to π radians. In order to characterize the conditional
probability of observing a spike given the phase of a neural oscillation,
we regress upon functions that are continuous on a circular plane. The
Von Mises function, a circular variant of the normal function, of mean μ
and inverse variance κ, is given by

=V µ e
I
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where I0 is the Bessel function of order 0. We chose this function to form
the overcomplete basis in this study because it is a well-defined func-
tion that is commonly used when representing circular datasets (Kim
et al., 2013; Masseran et al., 2013; Mooney et al., 2003; Olson et al.,
2017). While we have chosen to use Von Mises functions, alternative
circular functions (e.g sine, cosine) can also be used to form the over-
complete basis. The phase θ is converted into a set of regressors by
defining

= = … = …V V µ i I j J( ) ( ; , ), 1, , , 1, ,i j i j, (5)

where i indicates one of I= 19 possible means spanning from −π and π
in steps of 0.314 radians, and j indicates one of J= 20 possible inverse
variance values ranging from 0.01 to 30 in steps of 1.5005. For re-
ference, these inverse variance values translate to approximate widths
at half-maximum spanning one half to 3/50th of a cycle. A total of 380
continuous functions were generated using (5) from each unique mean
and variance pair, forming an overcomplete basis of functions through
which spike-phase relationships could be represented.

2.2. Calculating the conditional probability of a spike given the phase of an
oscillation

We discretize spiking activity into time bins matching the LFP
sampling frequency (e.g. 1 ms), treating the resulting time series as a
sequence of Bernoulli random variables which can take values 0 (no
spike) or 1 (spike). We use a generalized linear model (GLM) with logit

link function (canonical for the Bernoulli probability model) as a dis-
crete time statistical model of neural spiking (Haslinger et al., 2010;
Lewis et al., 2012). Specifically, at time bin t, we use the logit link
function to associate spiking probability to oscillatory phase θt as fol-
lows:
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where =ulogit( ) log u
u1 , Yt is a binary random variable at time t which

is 1 when a spike occurs and 0 otherwise, and x= [xi,j : i= 1, …, I,
j= 1, …, J] is a vector of length I× J pertaining to the weights applied
to each base function Vi,j.

We can define the regressor vector of length I× J at time t as
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so that (6) can be rewritten succinctly as
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The likelihood of a model is a quantitative measure for determining
the plausibility of a model given observed data. Maximizing the like-
lihood is a well-known procedure for determining x values that opti-
mize the model fit (Poor, 2013). Since − log(u) is a monotonically
decreasing function of u, maximizing the likelihood is equivalent to
minimizing the normalized negative log likelihood, given by:
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Although directly minimizing l(x) provides an estimated weight, xi,j, for
each basis function Vi,j, this would lead to overfitting in our setting
given the use of this overcomplete basis. As such, the resultant model
would be less generalizable, and less likely to represent the underlying
relationship because of poor bias-variance tradeoffs (Poor, 2013) that
arise when performing maximum likelihood with large numbers of
parameters.

2.3. Active regressor selection with an ℓ1-regularized generalized linear
model

In this section, we first discuss challenges in selecting functions for
models of different complexity, and then propose a solution for opti-
mizing both the number and identity of basis functions used in the
model to represent the data. While some basis functions, such as
Zernike polynomials, have a natural ordering based upon increasing
complexity and orthogonality (Barbieri et al., 2002; Coleman and
Sarma, 2010; Lakshminarayanan and Fleck, 2011), there is no natural
ordering for basis functions such as Von Mises functions. One possible
method for increasing the number of Von Mises functions in the model
adopts a stepwise approach. In this approach, an ordering is established
by systematically adding one additional function to the model at a time.
Each new function optimizes the fit given the functions already within
the model. This stepwise approach increases model complexity in an
ordered fashion, but can cause inefficient selection of function identity
and possible inflexibility in the shape of the model. For example, the
first Von Mises function selected to characterize a spike-phase re-
lationship with two neighboring peaks may be a function that spans
both peaks due to their proximity. Additional functions added using a
stepwise approach must improve upon an existing poor fit, rather than
allowing functions in the model to flexibly change as complexity is
increased. To solve this problem, we propose the use of a term
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proportional to the ℓ1 norm of x,
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to impose sparsity in the number of regressors used to characterize the
data:

+l x xmin { ( ) }x q 1 (12)

where λq is a non-negative regularizer coefficient that controls the
magnitude of regularization and thus the sparsity in the solution. We
define the active set q[ ] to be the set of (i, j) pairs for which the weights
associated with the solution of (12) are nonzero. By systematically
varying the magnitude of the regularization λq as a function of index q,
the active set can be varied, allowing greater or fewer numbers of re-
gressors to be used in the model. Unlike adding an additional regressor
to the model in a stepwise manner, this method allows the regressors
within the active set to change as λq changes, making this method more
adaptable than a stepwise method. Thus, ℓ1-regularization provides a
method for both increasing the model complexity and selecting the
most appropriate set of Von Mises basis functions for any given model
order. Note that while the x is a term within (12), the purpose of this
step is to identify the active set q[ ] associated with λq, and not to
identify the optimal weights. This is in part because of a well-known
drawback of ℓ1-regularized estimators is the systematic shrinkage of the
large coefficients towards zero (Belloni et al., 2013).

2.4. Model fitting

By defining the inner product with respect to the active set
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we can define the likelihood of x with respect to as the likelihood in
(10), but only operating on the (i, j) components of x and Rt within :
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Thus, after finding the active set q[ ], weights can be calculated for
each Von Mises function using standard maximium likelihood proce-
dures operating upon regressors in the active set:

=x q l x q[ ] argmin ( ; [ ])
x (15)

where it is assumed that for any (i, j) pair that is not in q[ ], the
coefficient x[q]i,j= 0. Now that the Von Mises functions have been
ordered using a method that best allows them to represent the data,
another method is required to select the active set that optimally de-
scribes the data while minimizing overfitting.

2.5. Model selection

To minimize overfitting, we implement a model selection procedure
that utilizes the Akaike information criterion (AIC) (Akaike, 1974). This
method applies an additive penalty term to l according to the number of
degrees of freedom for the qth model, which in the case of ℓ1-regular-
ized problems pertains to the size of the active set (Tibshirani and
Taylor, 2012; Zou et al., 2007):

= +A l x q q
d
N

( [ ]; [ ]) ,q
q

(16)

where dq is the number of elements in q[ ]. We then select q* as a local
or global minimum of Aq and select

= =q x x q* [ *], * [ *]. (17)

As such, * is the active set that optimally characterizes the data while
minimizing overfitting. This approach thus provides an unbiased
method for determining the optimal number of regressors and asso-
ciated weights to use with the model.

2.6. Calculating the final conditional probability using the selected model

Following the selection of the optimal active set, the optimal con-
ditional probability of a spike given the phase of an oscillation is cal-
culated given the following equation:
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where * and x* are the optimal active set and optimal weights, re-
spectively, as described in (17).

2.7. Goodness of fit

To evaluate whether or not a proposed statistical model of neural
spiking appropriately characterizes the spike train time series, a good-
ness-of-fit measure is needed to quantitatively assess the agreement
between the model and neural spiking activity. The time-rescaling
theorem (Brown et al., 2002) indicates that with an accurate model, a
transformation of inter-spike-intervals (ISIs) can be performed to con-
struct a new spike train with independent, identically distributed ISIs.
Standard goodness-of-fit with quantile-quantile (Q-Q) plots can be ap-
plied to these ISIs. Altogether, performing this procedure allows for an
assessment of whether the statistical model indeed characterizes the
statistical nature of the measured spike train (Brown et al., 2002).
Confidence intervals (e.g. 95%) alongside the Q-Q plot can be used to
assess the extent to which the model accurately represents the data. In
addition, a χ2 test can be performed in order to assess the extent to
which the estimated conditional probability deviates from a theoreti-
cally equiprobable distribution, with p< 0.05 used as a significance
threshold. The entire workflow is illustrated in Fig. 2.

2.8. Simulated neural data

To simulate neural oscillations in the local field potential, we gen-
erated 60 s of continuous, circular phase data that repeatedly spanned
−π to π radians in uniform steps. To emulate theta oscillations typical
of the rodent hippocampus, the phase data completed a cycle every 125
data points, corresponding to an 8 Hz oscillation recorded at a sampling
rate of 1000 Hz.

In order to evaluate the effectiveness of the model in characterizing
different spike-phase relationships, simulated unimodal and multi-
modal relationships were created. To generate these relationships, the
same Von Mises distributions used to form the overcomplete basis de-
scribed in Section 2.1 were chosen to create ground truth probability
values obeying the following relationship:

= =P Y R wˆ ( 1| ) ,t t t (19)

where P̂ is the simulated conditional probability of observing a spike at
time t for a specific phase θt, Rt is the vector of Von Mises functions
evaluated at θt, given by (7), and w is a length I× J vector of coeffi-
cients. Note that this method of generating the simulated data does not
contain the logit function and thus differs from (6) used in the model.
Since the simulated dataset falls outside the class of parametric statis-
tical models for which we will perform inference, this allows us to test
the ability to approximately recover spike-phase statistical relationships
that lie outside the model class.

To create unimodal spike-phase relationships, an (i, j) pair was
chosen at random to select a single Von Mises distribution fi,j. This
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process was repeated for every cycle of the phase data set. The asso-
ciated w vector contained all zeros except in the (i, j) position, where wi j,
was randomly selected to scale the Von Mises function while ensuring
that R w,t at each t remained between 0 and 1. At each time point t,
spikes were generated according to the probability dictated by (19). To
generate multimodal spike-phase relationships, multiple (i, j) pairs were
chosen at random, and each coefficient wi j, was scaled to ensure that
R w,t at each time point remained between 0 and 1.

2.9. Identification of data limitations

In order to simulate similar spike-phase relationships from neurons
exhibiting a range of different firing rates, wi j, was adjusted to create
peak probability values ranging from 0.001 to 0.9 for the unimodal
condition. In a data set in which phase data completes a cycle every 50
data points (corresponding to a 20 Hz oscillation recorded at a sampling
rate of 1000 Hz) these peak probability values correspond to a range of
firing rates from approximately 0.3 Hz to 314.2 Hz. This method sub-
stantially adjusts the probability of observing a spike on any given
cycle, while maintaining the degree of phase modulation within a cycle.
To increase the size of the dataset, these cycles were repeated for larger
or smaller intervals depending on the desired data length. Spikes were
generated for data sets ranging from 1 to 300 s.

Since the workflow requires at least one spike to attempt char-
acterization of the data, there is a limited ability to test the effectiveness
of the model in low firing rate and small data size conditions. In these
circumstances, our methodology will generally overestimate spiking
probabilities. Given the tendency for inaccurate spike probability esti-
mates in small data sizes, the approximate mean firing rates for simu-
lated data sets (Fig. 4) were calculated from the total number of spikes
in a 300 s interval. To compare the conditional intensity functions es-
timated by our method to the ground truth functions used to simulate
the spiking data, two-sample Kolmogorov–Smirnov (K-S) tests were
performed between P̂ and P. In addition, the normalized root mean
squared error (NRMSE) was calculated as:

=
= == g P Y P Y

T
NRMSE log

( ( 1| ) ˆ ( 1| ))
N g

t
T

t t
,

1
1 2

(20)

where P(Y= 1|θ) is given by (18), =P Yˆ ( 1| ) is given by (19), g is the
maximum probability of the simulated conditional intensity function,
and T is the duration of the simulated data. Note that in (20), the
predicted conditional intensity function is normalized using g to ensure
that the calculated error is consistent across all neuron firing rates.

As neural oscillations are often non-sinusoidal, it is important to
assess the extent to which model estimates are influenced by an uneven
distribution of phase data. To this end, we generated 60 s of a sinusoidal
and a non-sinusoidal 8 Hz signal (Fig. 5A). The non-sinusoidal signal
was generated from a bursty oscillator, with approximately 20% of the
signal dedicated to the rise time of the oscillator and 80% dedicated to
the decay time. The Hilbert transform was then applied to extract phase
data from both signals. We then generated simulated spiking activity
such that the probability of observing a spike at any given phase was
the same across both sinusoidal and non-sinusoidal signal types. Using
our method, we estimated the probability of observing a spike given the
phase of an oscillation under three different conditions: (1) a unimodal
spike-phase relationship centered at 0 radians where there is a higher
sampling of phases in our non-sinusoidal signal, (2) a unimodal spike-
phase relationship centered at π radians where there is a lower sam-
pling of phases in our non-sinusoidal signal, and (3) a condition in
which spiking is statistically independent of phase such that there is an
equal probability (approximately 0.035) of observing a spike at every
phase, based upon the average firing rate of the neuron in conditions 1
and 2.

2.10. Local field potential and single neuron recordings in rat hippocampus

Single neuron spiking activity and local field potential signals from
rat hippocampus were acquired as described previously (Rangel et al.,
2016). Briefly, tetrodes of 12 μm nickel-chrome wire were lowered into
the CA1 region of the right dorsal hippocampus. Final tetrode locations
were verified via a Nissl stain in 40 μm coronal sections. Neural re-
cordings were acquired using a 96-channel recording system (Omni-
Plex, Plexon, Dallas, TX), bandpass filtered between 400 and 8000 Hz to
digitally isolate spikes, and bandpass filtered between 1 and 400 Hz to

Fig. 2. Illustration describing the methodological pipeline for predicting the
probability of a spike given the phase of an oscillation. (A) Raw local field
potential signal (gray), filtered signal in the theta (5–10 Hz) frequency range
(red), and instantaneous phase of the theta oscillation (green) with corre-
sponding spike times above (black tick marks). (B) A sample set of Von Mises
basis functions used to construct model regressors. (C) Equation for calculating
basis function weights using a ℓ1-regularized generalized linear model, where
the regularizer coefficient (λq) is systematically varied in order to selectively
order the number of basis functions used. (D) Sample ordering of Von Mises
basis functions used to characterize the data in Fig. 1, showing the active set of
Von Mises functions with increasing model order complexity (gray). Our
method selected seven functions as the optimal number of functions to re-
present the data (bottom), and we show the weighted combination of these
functions for comparison (see also red line in Fig. 1). (E) Equation for calcu-
lating the weights for each basis function based upon the ordering determined
in step C. (F) Normalized negative log likelihood (black) and penalized nor-
malized negative log likelihood (red). (G) Sample Q-Q plot of actual and the-
oretical spiking data with associated 95% confidence interval. (H) Conditional
probability estimated by the model that best characterizes the data while
minimizing overfitting according to F. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)
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digitally isolate local field potentials. The spikes from a single neuron
were isolated by comparing waveform features across tetrode wires
(Offline Sorter, Plexon, Dallas, TX), including peak and valley voltage
amplitudes, total peak-to-valley distance, and principal components
analysis. Principal cells and interneurons were differentiated according
to both firing rate and waveform characteristics. Specifically, neurons
were clustered according to mean firing rate, mean width at half-
maximum amplitude, and mean temporal offset from the peak to the
trough of the waveform. This resulted in the identification of inter-
neurons with mean firing rates of at least 5 Hz, a mean width half-
maximum amplitude of less than 150 μs and a mean peak to trough
waveform width of less than 350 μs. A 3rd-order Butterworth filter was
used to bandpass filter the LFP for theta (5–10 Hz) or high gamma
(65–135 Hz), and the instantaneous phase was calculated by taking the
arctangent of the complex Hilbert transform of the filtered signal
(Rangel et al., 2016). For this study, local field potential activity and the
spiking activity from a single CA1 interneuron were simultaneously
acquired from the same tetrode during 300 s when the rat was allowed
to freely explore an approximately 4 ft2 platform for randomly spaced
cereal pieces.

3. Results

3.1. Simulated data

To generate unimodal spike-phase relationships, a single Von Mises
distribution was selected at random to be used as a ground truth con-
ditional probability function, as described in Section 2.8. For our ex-
ample unimodal spike-phase relationship, our workflow selected six
basis functions as the optimal number for characterizing the spike-
phase relationship (Fig. 3A left, χ2 = 9960, p < 0.0001,
d.f. = 59,993).

To generate a multimodal spike-phase relationship, five Von Mises
distributions were selected at random, averaged, and scaled to create a
ground truth conditional probability function, also as described in
Section 2.8. For our example multimodal spike-phase relationship, our
workflow selected fourteen basis functions as the optimal number for

characterizing the spike-phase relationship (Fig. 3B left, χ2 = 8820,
p < 0.0001, d.f. = 59,985).

For both simulated unimodal and multimodal spike-phase re-
lationships, the predicted distributions of spikes across phase closely
matched the ground truth conditional probability functions that were
utilized (Fig. 3A and B, middle). This is corroborated by the fact that Q-
Q plots associated with the time-rescaled inter-spike intervals for both
data sets remained within the 95% confidence interval (Fig. 3A and B,
right).

3.2. Simulated data with a range of spike probabilities and data sizes

In order to assess the effectiveness of our method in capturing spike-
phase relationships given neurons of different firing rates and data sets
of various sizes, both the firing rate and the data size were system-
atically adjusted, as described in Section 2.9. The NRMSE between the
actual (i.e. ground truth) and model predicted conditional probability
functions was calculated using (20) (Fig. 4A). This measure assesses the
degree to which conditional probability functions estimated by our
workflow are different from the ground truth function used to generate
the spiking data. In addition, two-sample Kolmogorov–Smirnov tests
were performed to assess whether ground truth and model predicted
conditional probability functions were statistically different (Fig. 4B).
In general, models generated from our workflow captured ground truth
best given higher firing rates and longer data sets. Notably, Q-Q plots of
actual and theoretical (i.e. model predicted) spiking data remained
within the 95% confidence interval for all firing rate and data size
combinations.

3.3. Simulated spike-phase relationships to sinusoidal and non-sinusoidal
signals

While the simulated sinusoidal signal contained a uniform dis-
tribution of phases (Fig. 5B), the simulated non-sinusoidal signal con-
tained a larger number of phases centered around 0 radians (Fig. 5C).
To assess the extent to which this non-uniform phase distribution may
influence model estimates, spiking data was generated with either (1) a

Fig. 3. Model results for simulated unimodal (A) and multimodal (B) spike-phase relationships. Left: Normalized negative log likelihood (black) and penalized
normalized negative log likelihood (red). Middle: Ground truth conditional probability function (black) and predicted conditional probability function (red). Right:
Q-Q plots (solid line) with associated 95% confidence intervals (dashed lines). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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statistical dependence to phase with a higher probability of firing
centered at 0 radians, (2) statistical dependence to phase with a higher
probability of firing centered at π radians, or (3) statistical in-
dependence from phase. These spike-phase conditions were created for
both sinusoidal and non-sinusoidal signals. For both sinusoidal and
non-sinusoidal signals, our workflow selected two basis functions as the
optimal number for characterizing a unimodal spike-phase relationship
centered at 0 radians (Fig. 5D; sinusoidal: χ2 = 1980, p < 0.0001,
d.f. = 60,029; non-sinusoidal: χ2 = 1760, p < 0.0001, d.f. = 59,997).
Our workflow selected three basis functions to characterize a unimodal
spike-phase relationship to the sinusoidal signal centered at π radians

(Fig. 5E, χ2 = 2020, p < 0.0001, d.f. = 60,028), and two basis func-
tions to describe the same relationship to the non-sinusoidal signal
(Fig. 5E, χ2 = 1690, p < 0.0001, d.f. = 59,997). Lastly, our workflow
selected two regressors and a single regressor to characterize statisti-
cally independent spiking activity with respect to the phase of the si-
nusoidal and non-sinusoidal signal, respectively (Fig. 5F; sinusoidal:
χ2 = 3.34, p < 0.188 n.s., d.f. = 60,029; non-sinusoidal: χ2 = 3.39,
p < 0.0656 n.s, d.f. = 59,998). In all conditions, our method accu-
rately estimated the ground truth probability functions used to generate
the spiking data (bottom, Fig. 5D–F).

Fig. 4. Model results given data sets with a range of different spiking probabilities and data sizes. (A) Log of the normalized root mean squared error (NRMSE)
between conditional probability functions estimated by our method and the ground truth function used to generate the spiking data (see Eq. (20)). Maximum spiking
probabilities (x-axis) range from 0.001 to 0.9 and data sizes (y-axis) range from 1 to 300 s (for method, see Section 2.9). Approximate firing rates, indicated below
spike probabilities on the x-axis, are calculated from the total number of spikes in a 300 s interval. (B) Color map indicating whether ground truth spike-phase
distributions and model predicted distributions are significantly different (red), assessed using a Kolmogorov–Smirnov test with a significance threshold of p= 0.05.
(C) The number of basis functions utilized after implementing model selection procedures. White labels D, E, and F within figures A–C indicate the spike probabilities
and data sizes for examples in D–F. (D–F) Top: Distribution of simulated spikes across the phases of a 20 Hz oscillation. Middle: Ground truth conditional probability
function (black) and predicted conditional probability function (red). Bottom: Q-Q plots (solid line) with associated 95% confidence intervals (dashed lines). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.4. Rat hippocampal data

Our methodology predicted one basis function as the global
minimum of (16) for characterizing the relationship between the
spiking activity of a CA1 interneuron and the phase of a simultaneously
recorded hippocampal theta (5–10 Hz) oscillation (Fig. 6D, χ2 = 497,
p < 0.0001, d.f. = 299,998). The Q-Q plot comparing the actual
spiking distribution to the probability distribution described by the
model reveals aspects of the data that deviate outside of the 95%
confidence interval (Fig. 6G). Comparing actual and theoretical spiking
data for isolated 10 s intervals within the larger 300 s dataset revealed
epochs in which Q-Q plots remained within the 95% confidence in-
terval (Fig. 6H). Notably, when examining Aq in (16) across model
orders, a local minimum was also observed at a model order containing
22 basis functions (Fig. 6D, χ2 = 517, p < 0.0001, d.f. = 299,977).
The associated probability distribution revealed an additional multi-
modal rhythmic modulation occurring at intervals within the theta
cycle when spiking probability is decreased (Fig. 6E). As the period for
the theta (5–10 Hz) ranges from 100 to 200 ms, we estimated the period
of the nested rhythmic modulation to correspond to approximately
65 Hz to 135 Hz. To further explore this activity, a high gamma

(65–135 Hz) filter was applied to the local field potential and our
workflow was reapplied to examine spike-phase relationships to this
new frequency range. Our methodology selected seven basis functions
as the optimal number for characterizing the spike-phase relationship to
gamma (Fig. 6I, χ2 = 110, p < 0.0001, d.f. = 299,992).

4. Discussion

In this paper, we propose an objective method for creating a point
process statistical model to characterize spike-phase relationships.
Contrary to most other approaches, our method does not impose a
unimodal spike-phase relationship shape upon the data. Rather, we
utilize an overcomplete basis of Von Mises basis functions with varying
mean and inverse variance combinations as potential regressors for the
model. By establishing an overcomplete basis, our methodology is
better able to characterize any possible spike-phase relationship shape.
We then utilize a modern high-dimensional statistics approach to per-
form active set selection with ℓ1-regularized maximum likelihood esti-
mation, followed by maximum likelihood on the active regressors to
calculate model weights. As ℓ1-regularization imposes sparsity, our
methodology is able to flexibly select the active set of functions that

Fig. 5. Model results for spike-phase relationships to sinusoidal and non-sinusoidal signals. (A) Single cycle of a simulated sinusoidal and non-sinusoidal signal.
Distribution of phases for 60 s of a (B) sinusoidal (blue) and (C) non-sinusoidal (red) 8 Hz signal. While the sinusoidal signal contains a uniform distribution of phases,
the non-sinusoidal condition contains a larger number of phases centered around 0 radians. (D–F) The estimated probability of observing a spike given the phase of a
sinusoidal (dashed cyan) and non-sinusoidal (dashed magenta) oscillation for three different conditions: (D) a unimodal spike-phase relationship centered at 0
radians where there is a higher sampling of phases in our non-sinusoidal signal, (E) a unimodal spike-phase relationship centered at π radians where there is a lower
sampling of phases in our non-sinusoidal signal, and (F) a condition in which there is an equal probability (0.035) of observing a spike at every phase that is based
upon the average firing rate in D and E. Ground truth conditional probability functions for D–F are shown in black dashed lines. Corresponding Q-Q plots (colored
dashed lines) with associated 95% confidence intervals (black dashed lines) are shown directly below (D–F). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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best characterizes the data at different levels of model complexity,
thereby minimizing the imposition of biases regarding the shape and
modality of spike-phase relationships upon the data. We then utilize the
Akaike information criterion (AIC) to select the active set and corre-
sponding model weights that best describe the data while minimizing
overfitting. This method robustly characterizes a wide range of spike-
phase relationships, and reveals coordinated, rhythmic relationships
that were previously difficult to identify.

In simulated data, the conditional probabilities estimated by our
workflow for both unimodal and multimodal spike-phase relationships
were in high agreement with the ground truth relationships, as de-
monstrated by every Q-Q plot remaining within the 95% confidence
interval (Figs. 3 and 4). This is particularly noteworthy given that the
ground truth distribution was created using an identity link function in
(19), whereas the model was fit according to a logit link function in
(18). These results demonstrate a capacity of the model to recover the
underlying shape of the spike-phase relationships even when the
parametrization in our model is different than the parametrization used
to generate the data.

The performance of the workflow given different neuronal firing
rates and data sizes illustrates several potential issues that can arise
from attempting to characterize spike-phase relationships with minimal
data. For example, although the Q-Q plots suggest a good fit to the data,
the ground truth and predicted spike-phase relationships are often quite

different when low firing rates are combined with small data sizes
(Fig. 4A and B). Thus, even though the model accurately captures spike-
phase relationships in the data available, the data is not sufficient to
appropriately represent the ground truth probability. In addition, as at
least one spike is required to attempt characterization of spike-phase
relationships, our methodology will generally overestimate spiking
probability for low firing rate and small data size combinations. These
issues, however, are not unique to our method. Instead, this demon-
strates the limitations of this type of data and serves as a valuable re-
ference for spike-phase relationship characterization methods in gen-
eral. Researchers may refer to Fig. 4 to assess the feasibility of
characterizing spike-phase relationships given the firing rates of the
neurons in the data sizes available. Researchers can further use Fig. 4 to
guide future experiments in determining appropriate data sizes for a
given range of neuronal firing rates to ensure that the data being
modeled is representative of the underlying relationship. In future
work, theoretical approaches to bound errors in the model fit (e.g. with
Fisher Information (Lewi et al., 2007)) could be applied to analytically
assess the uncertainty in our estimates as a function of data size or firing
rate.

While our proposed workflow is agnostic to the method used to
extract phase from the local field potential, it is important to address
potential issues that may arise when attempting to characterize spiking
relationships to non-sinusoidal waveforms. For example, there is often a

Fig. 6. Rat hippocampal neuron data. (A) Histogram of interneuron spikes across the phases of a 5–10 Hz theta oscillation (black, left axis) and a histogram
presenting the distribution of theta phases from the filtered LFP (blue, right axis). (B) Representative segment of raw local field potential data (gray), theta phase
(green), and spiking times (black tick marks). (C) Raw local field potential data (gray), 5–10 Hz theta filtered local field potential (red), gamma filtered local field
potential (blue), and spike times (black tick marks). (D) Normalized negative log likelihood (black) and AIC penalized normalized negative log likelihood (red). (E)
Estimated conditional probability of observing a spike given the phase of theta using one basis function (red) and twenty-two basis functions (black). (F) Raw local
field potential data (gray), theta filtered local field potential (red), single basis function theta conditional intensity function (magenta), and spike times (black tick
marks). (G and H) Q-Q plots of actual and theoretical spiking data for (G) 300 s and (H) isolated 10 s intervals using the model selected by the workflow. (I) Raw local
field potential data (gray), gamma filtered local field potential (blue), gamma conditional intensity function (cyan) and spike times (black tick marks). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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concern that spurious spike-phase relationships can arise from a non-
uniform distribution of phases in non-sinusoidal signals (Fig. 5C).
Under conditions in which there is a statistical dependence between the
simulated neuronal spiking and local field potential phase, our method
accurately estimates spike probabilities to both sinusoidal and non-si-
nusoidal signals (Fig. 5D and E). Notably, under conditions in which the
probability of observing a spike is independent of phase, conditional
probability estimates did not significantly deviate from a theoretically
equiprobable distribution. This indicates that our method does not in-
troduce spurious spike-phase relationships to non-sinusoidal signals
(Fig. 5F). Since our method estimates the probability of observing a
spike at a given phase, a larger number of spikes observed at a parti-
cular phase due to a larger sampling of that phase is balanced by having
a greater number of instances of that phase. Small deviations in phase
value representation (e.g. slightly non-uniform phase distributions)
such as those observed in our non-sinusoidal examples will therefore
only affect the rate at which the workflow converges to the true value of
that relationship. Our method therefore minimizes biases that may be
introduced due to non-uniform distributions of phase, and accurately
estimates spike-phase relationships to both sinusoidal and non-sinu-
soidal oscillations.

In addition to being able to characterize simulated data, this
methodology captures spike-phase relationships in rodent hippocampal
data. Interneurons in the rat hippocampus have well-established re-
lationships to a theta (5–10 Hz) rhythm that commonly manifests in the
region during periods of free exploration (Buzsáki, 2002; Colgin, 2013;
Czurkó et al., 2011). Our model selection procedure identified a global
minimum when using a single Von Mises function to characterize the
spike-phase relationship of a CA1 interneuron to the local theta oscil-
lation during a 300 s period of random foraging. Although the Q-Q plot
of actual and theoretical spiking data deviated from the 95% confidence
interval (Fig. 6G), Q-Q plots of isolated 10 s intervals within the 300 s
period revealed multiple intervals in which the estimated conditional
probability was in high agreement with the data (Fig. 6H). Thus, the
estimated conditional probability likely captures a spike-phase re-
lationship that changes throughout the 300 s interval. This is not sur-
prising, as spike-phase relationships in the hippocampus are tightly
linked to behavior and the random foraging epoch contains intervals of
free exploration, grooming, sitting, and consummatory behaviors.
These results highlight the need to tightly control for behavior when
characterizing spike-phase relationships, while also demonstrating the
capability of the methodology at discerning relationships that evolve
over time.

Our analysis of hippocampal data showcases the use of our ap-
proach as a powerful data visualization and quantification tool. The
simultaneous assessment of spike-phase relationships to multiple
rhythms is challenging to characterize without any a priori knowledge
of typically co-occurring oscillations and their frequency ranges. Our
model selection procedure identified a local minimum when using
twenty-two Von Mises functions, revealing a relationship between a
CA1 interneuron and a 65–135 Hz high gamma frequency range nested
within a larger 5–10 Hz theta oscillation. Although it is well-established
that the hippocampal 5–10 Hz theta rhythm exhibits coupling to a
65–135 Hz high gamma rhythm during behavioral periods of active
exploration (Colgin et al., 2009; Colgin and Moser, 2010), here the high
gamma frequency range was empirically defined by estimating the
period of multiple peaks within the conditional probability function for
a spike-phase relationship to theta. The 65–135 Hz range was thus
identified through a regularly occurring spiking relationship nested
within theta cycles rather than through spectral decomposition and
interpretation of the LFP. Ultimately, these results prompted the de-
velopment of new regressors to estimate interneuron spike-phase re-
lationships to a 65–135 Hz high gamma rhythm. Notably, the spike-
phase relationship to the gamma frequency range appears to occur at a
phase of theta when the probability of observing a spike is lowest, re-
vealing an engagement in potentially distinct rhythmic circuits.

Combining regressors that characterize spike-phase relationships to
multiple rhythms in a single model will ultimately allow researchers to
uncover the manner in which neurons dynamically participate in
multiple rhythmic circuits during information processing.

Previous studies examining spike-phase relationships have often
utilized a combination of circular histograms to visualize spiking ac-
tivity across the phases of an oscillation, coherence measurements to
quantify relationships, and circular statistics to test for non-uniformity
(e.g. Rayleigh statistic). Some studies employ statistical modeling
techniques, utilizing a single regressor function (e.g. cosine) to capture
gross, unimodal spike-phase relationships (Barbieri et al., 2001; Canolty
et al., 2010; Dragoi and Buzsáki, 2006; Siapas et al., 2005; Siegel et al.,
2009; Whittingstall and Logothetis, 2009). Using a single shape, how-
ever, such as a sine wave, imposes a constraint onto the modeled spike-
phase relationship that does not necessarily represent the true re-
lationship within the data. Some studies have attempted to capture
potentially complex, multimodal relationships by using smoothing or
binning techniques. One such study utilizes kernel polynomials in
concert with kernel smoothing techniques to increase the adaptability
of the generated model (Kim et al., 2013). These smoothing techniques,
however, have the potential drawback of arbitrarily smoothing out
aspects of spike-phase relationships that are potentially meaningful, if
at relatively lower scale. Overcomplete basis functions have shown
promise in better approximating underlying probabilistic relationships,
particularly with sparse data representations (Lewicki and Sejnowski,
2000; Nakanishi-Ohno et al., 2016; Yang et al., 2011). We demonstrate
in this paper that using ℓ1-regularization coupled with an overcomplete
basis set enables an unbiased characterization of a large range of po-
tentially complex spike-phase relationships beyond what was pre-
viously possible.

Our proposed workflow can be adjusted as desired at several im-
portant stages. For example, while we have chosen Von Mises functions
as regressors for our models, additional circular functions (e.g. sine
waves) can also be used. In addition, while we have proposed a parti-
cular set of Von Mises functions for the purpose of characterizing spike-
phase relationships in this study, one can easily adjust the range of
means and inverse variances to select the desired number of potential
regressors as needed. A variety of model selection procedures may also
be implemented in our workflow as an alternative to AIC that use dif-
ferent approaches to minimize overfitting (e.g. Bayesian information
criterion, cross-validation, etc). Notably, our hippocampal data high-
lights the fact that interesting characteristics, such as nested rhythms,
may be found at local minima that are not captured at the global
minimum determined by AIC. This suggests that it may be important to
consider more models than the optimal model selected by our method.
Lastly, to improve the goodness of fit, additional intrinsic and extrinsic
covariates can be added to the methodology akin to those previously
proven to enhance spiking predictability (Truccolo et al., 2005). For
example, regressors can be added pertaining to previous spiking ac-
tivity for capturing refractory effects, and ensemble spiking activity for
capturing local network activity effects. In addition, relating each spike-
phase pair at time t with a distinct behavioral state during our sample
300 s foraging interval could drastically improve the model fit. While
we acknowledge that the inclusion of additional intrinsic and extrinsic
covariates will improve the goodness of fit of a model, the focus of this
paper is improving the method in which a single covariate is con-
structed.

Overall, our method provides researchers with a robust tool for
investigating rhythmic influences on neural spiking activity and the
complex manner in which these influences can be further temporally
coordinated. The inherent flexibility in our method allows researchers
to explore a wide range of potential spike-phase relationships, thereby
enabling the discovery of previously unknown rhythmic interactions.
This new information can then be used to develop novel hypotheses
regarding the temporally coordinated interactions underlying the pro-
cessing abilities of neural networks.
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