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Introduction

A technology that accomplishes fast, easy, inexpensive, and 
sensitive DNA screening is an attractive way to profile sam-
ples prior to or in lieu of deeper sequencing investigations. 
The increased availability of deep sequencing facilities to 
identify low-level genotypes in complex samples has made 
deep sequencing an increasingly common research tool. 
The cost, time, computation, and expertise required to carry 
out deep sequencing still, however, represent significant 
hurdles for use in many applications.1–4 High-resolution 
DNA melting analysis, in which double-stranded DNA is 
heat denatured into its single-stranded form in the presence 
of fluorescent intercalating dyes or molecular beacons, is 
capable of rapidly genotyping sequences. This closed-tube 
method is performed directly after PCR amplification of 
specific targets and has traditionally been used for (1) muta-
tion or single nucleotide variation (SNV) detection based 
on melting temperature (Tm) shifts, or (2) heterozygote 
detection based on differences in the curve shape when 
aligned to the homozygous sequence melt curve.5,6 In com-
bination with machine learning algorithms and universal 
primers or adapters, high-resolution melt analysis can 

accomplish broad-based sequence identification tasks such 
as microbial or microRNA profiling.7–16 In its traditional 
PCR well-plate format, however, melt analysis of heteroge-
neous samples precludes detection of low-level genotypes 
and generates complex melt curves that are difficult to 
interpret.9,17,18
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Abstract
DNA melting analysis provides a rapid method for genotyping a target amplicon directly after PCR amplification. To 
transform melt genotyping into a broad-based profiling approach for heterogeneous samples, we previously proposed 
the integration of universal PCR and melt analysis with digital PCR. Here, we advanced this concept by developing a 
high-resolution digital melt platform with precise thermal control to accomplish reliable, high-throughput heat ramping of 
microfluidic chip digital PCR reactions. Using synthetic DNA oligos with defined melting temperatures, we characterized 
sources of melting variability and minimized run-to-run variations. Within-run comparisons throughout a 20,000-reaction 
chip revealed that high-melting-temperature sequences were significantly less prone to melt variation. Further optimization 
using bacterial 16S amplicons revealed a strong dependence of the number of melting transitions on the heating rate 
during curve generation. These studies show that reliable high-resolution melt curve genotyping can be achieved in digital, 
picoliter-scale reactions and demonstrate that rate-dependent melt signatures may be useful for enhancing automated melt 
genotyping.
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We conceived digital melt analysis to overcome these 
limitations.8 It involves partitioning a heterogeneous sam-
ple into many small-volume PCR reactions, such that each 
contains zero or one target molecule,8 and subsequently 
conducting universal PCR and melt analysis on all reac-
tions. Because each reaction amplifies from a single target 
molecule, each digital melt curve is a sequence fingerprint 
of only one sequence within the heterogeneous sample. 
Subsequently, machine learning algorithms are used to 
automatically identify melting curve signatures and quan-
tify the number of reactions containing each signature.8,19 
This form of melt analysis distinguishes itself from previ-
ous forms by relying not only on Tm or aligning melt curve 
shapes, but instead using all the temperature points encom-
passed by the curve. Likewise, digital melt analysis distin-
guishes itself from digital PCR (dPCR) by virtue of its goal 
to amplify an entire class of sequences through universal 
priming for subsequent identification, as opposed to the 
amplification of a specific sequence by targeted priming for 
quantification purposes only. Because commercially avail-
able dPCR systems cannot be extended to accomplish digi-
tal high-resolution melt (dHRM) analysis (because nearly 
all have heating and imaging components that are physi-
cally separated into individual pieces of equipment),20,21 we 
developed a dedicated digital melt analysis platform.22 Our 
device was, however, significantly limited by the poor 
reproducibility of the temperature ramp, which altered the 
melting curve shape and melting temperature (Tm) of the 
amplicons from run to run. This limitation hampers the abil-
ity of our algorithm to reliably recognize sequence melt fin-
gerprints. The variation in melt curve along the temperature 
axis also restricts the scalability of the database, limiting the 
breadth of detection available for profiling. Dedicated melt 
curve analysis instruments for traditional PCR formats also 
suffer from melt curve reliability issues, depending on the 
sample format and heat transfer methods. A significant need 
remains for improved uniformity and linearity of thermal 
control during melting analysis in general, and especially if 
melt analysis is to achieve the goal of broad-based melt 
genotyping in a higher throughput format.

The aim of the current study was to design and character-
ize a robust high-resolution digital melt heating device to 
minimize melt curve variation among 20,000 725 pL reac-
tions and between runs to enable reliable automated 
sequence identification. Ideally, the device will accomplish 
highly linear and reproducible heat ramping that produces 
no more than 0.1 °C well-to-well and run-to-run variation in 
Tm.23 It should also be tunable so that the optimal ramp rate 
can be determined for different genotyping applications. 
Heating rate linearity and reproducibility were controlled 
and characterized using continuous two-point physical tem-
perature measurements. Further characterization and opti-
mization of well-to-well and run-to-run variation were 
carried out using synthetic DNA oligos as Tm calibrators or 

amplicons from the bacterial 16S gene. For the purposes of 
characterizing our device for melting, we directly loaded 
pre-amplified oligos into the wells at post-PCR concentra-
tions. The device’s ability to precisely control various user-
defined heating rates revealed a novel dependence of melt 
curve dynamics on melting rate that was independent of 
imaging rate (fluorescence measurement/°C) or melt curve 
resolution. Well-to-well comparisons also revealed that 
high-Tm sequences were significantly less prone to melt 
variability.

Materials and Methods

Sample Preparation for Temperature Calibrator 
Sequences

Three temperature calibrator sequences with varying GC 
content and known melting temperatures were used to opti-
mize the heating of our system: 0% GC (TTAAATTATAAA 
ATATTTATAATATTAATTATATATATATAAATATAATA- 
C3), 12% GC (TTAATTATAAAGGTATTTATAATATTG 
AATTATACATATCTAATATAATC-C3), and 76% GC 
(GCGCGGCCGGCACCCGAGACTCTGAGCGGCTGC 
TGGAGGTGCGGAAGCGGAGGGGCGGG-C3) 
(Integrated DNA Technologies, Coralville, IA). The master 
mix containing the three temperature calibrators was cre-
ated as follows: 1× Phusion HF Buffer containing 1.5 mM 
MgCl2 (Thermo Fisher Scientific, Waltham, MA), 4 µM of 
equal mixtures of the three temperature calibrator sequences, 
1× ROX (Bio-Rad Laboratories, Hercules, CA), 2× 
EvaGreen (Biotium, Fremont, CA), and Ultra Pure PCR 
water (Quality Biological Inc., Gaithersburg, MD) to bring 
the total volume to 15 µL. Of the 15 µL master mix, 14.5 µL 
was then loaded onto a commercially available dPCR chip 
containing 20,000 picoliter-sized reaction wells, the 
QuantStudio 3D Digital PCR 20K Chip V2 (Applied 
Biosystems, Foster City, CA), as described in Ortiz et al.22 
The chips were filled with a PCR-grade oil, QuantStudio 
3D Digital PCR Immersion Fluid (Applied Biosystems), to 
prevent sample evaporation during thermocycling, and they 
were sealed with an adhesive lid that contained an optical 
window for imaging (included in the 3D Digital PCR 20K 
Chip V2 Kit).

Sample Preparation for Bacterial Samples

Bacterial genomic DNA (gDNA) was isolated from an over-
night culture of bacteria using the Wizard Genomic DNA 
Purification Kit (Promega Corporation, Madison, WI). The 
stock DNA concentration was determined by the biospec-
trometer absorbance readings. Next, the desired DNA con-
centration was achieved through serial dilutions and added 
to the master mix, which contained the following concentra-
tions: 1× Phusion HF Buffer containing 1.5 mM  MgCl2 
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(Thermo Fisher Scientific), 0.15 µM forward primer 
5′-GyGGCGNACGGGTGAGTAA-3′ (Integrated DNA 
Technologies), 0.15 µM reverse primer 5′-AGCTGAC 
GACANCCATGCA-3′ (Integrated DNA Technologies), 0.2 
mM deoxynucleotides (dNTPs; Invitrogen, Carlsbad, CA), 
2.5× EvaGreen (Biotium), 2× ROX (Bio-Rad Laboratories), 
0.02 U/µL Phusion HotStart Polymerase (Thermo Fisher 
Scientific), 0.3 µM temperature calibrator sequence with 0% 
GC content (see above), and Ultra Pure PCR water (Quality 
Biological Inc.) to bring the total volume to 15 µL. A reac-
tion volume of 14.5 µL was spread onto the dPCR chip (see 
above). A flatbed thermocycler was used to amplify the 
hypervariable regions, V1 to V6, of the 16S ribosomal RNA 
(rRNA) gene using the following PCR cycle: 1 cycle of 
98 °C for 60 s, and 70 cycles of 95 °C for 15 s, 58 °C for 30 s, 
and 72 °C for 60 s.

Cell Culture

Clinically isolated Moraxella, Acinetobacter, and 
Salmonella enterica were grown separately overnight in 
Luria–Bertani (LB) broth. Sterile conditions were used to 
ensure uncontaminated growth of each bacteria.

Chip Heating Device

The thermoelectric (TEC) heating and cooling device was 
purchased from TE Technology, Inc. (Traverse City, MI). 
The proportional-integral-derivative (PID) controller was 
purchased from Meerstetter Engineering GmbH (Rubigen, 
Switzerland). Resistance temperature detector (RTD; Class 
1/3B) and thermocouple (K-type) sensors were purchased 
from Heraeus (Hanau, Germany) and OMEGA Engineering 
(Stamford, CT), respectively. Medium to high amounts of 
thermal paste gave the most repeatable results (data not 
shown).

Fluorescent Imaging

The Nikon Eclipse Ti (Nikon, Tokyo, Japan) platform is cus-
tomized to accomplish imaging for the dHRM system, as 
described in our earlier work.22 Fluorescent images are cap-
tured with a melt curve intercalating dye, EvaGreen, and a 
control dye, ROX, at 488/561 nm and 405/488 nm excita-
tion/emission filters, respectively, with an exposure time of 

100 ms at a light-emitting diode (LED) intensity of 40%. 
The microscope is interfaced with a Hamamatsu digital 
camera, C11440 ORCA-Flash4.0 (Hamamatsu, San Jose, 
CA), for image acquisition at a rate commensurate with the 
heat ramping. The imaging rate is adjusted based on the heat 
ramping to maintain a resolution of 0.1 °C between images 
(Table 1). NIS-Elements software (Nikon) is programmed 
to automatically image the chip as the heating device ramps 
by running a time lapse to image every specified time point. 
For every image, the microscope automatically records the 
temperature of the surrogate chip registered by the thermo-
couple temperature probe within the metadata of the image. 
For this experiment, we used a Nikon Plan/Fluor 4× objec-
tive with a numerical aperture of 0.13 and a working dis-
tance of 16.5× to image a corner of the chip. Hence, every 
section of the chip was imaged as part of a separate run with 
simultaneous heating of the entire chip. This allowed us to 
maximize the number of runs and data per chip to character-
ize our heating system. For an ideal-use case, as described in 
our previous publication,22 we can sweep the imaging loca-
tion to image the entire chip for all runs.

Image Analysis

Melt Curve Data Generation.  First, the acquired fluorescence 
images are aligned using a template-matching plugin in 
ImageJ. Then, melt curves are generated using an auto-
mated image-processing algorithm implemented in MAT-
LAB. The algorithm applies a median filter to remove 
salt-and-pepper noise in the images. It then generates a 
binary mask for each well on the chip and tracks them on all 
images. Pixels within 80% of the detected well radius are 
recorded and averaged to generate the fluorescence value in 
both ROX and EvaGreen channels for the specified well. 
The fluorescence values are tracked for each well among all 
images to generate curves for both EvaGreen and ROX 
channels. Filter (EvaGreen) curves generated are normal-
ized against filter (ROX) values to account for any localized 
errors or noise due to bubbles in the chip, or any abrupt 
change in ambient light, as described in our previous 
publication.22

Temperature Measure

Imaging software records the temperature corresponding to 
each image from the surrogate chip. The temperature acqui-
sition rate is, however, limited to approximately 0.20 Hz. 
Line fitting is performed using the unique temperature and 
time pair acquisitions to estimate temperature for each 
acquired image for faster imaging rates (Suppl. Fig. 1). A 
melt curve for each well is plotted against this estimated 
temperature. The negative derivative is taken with respect 
to temperature. Normalization and smoothing are per-
formed as described in previous publications.22 To study the 

Table 1.  Corresponding Heating and Imaging Rates.

Heat Ramp Rate (°C/s) Imaging Frequency (Hz)

0.01 0.1
0.05 0.5
0.1 1
0.2 2



4	 SLAS Technology  00(0)

rate dependence of melt curves, bacterial melt curves were 
generated that aligned the curves to their Tm.

Results

System Design

To optimize the heat ramp control of the microfluidic chip, 
we redesigned the thermal control system of our dHRM 
platform. Previously, the chip was housed in a copper block, 
which was heated or cooled by a TEC device. To precisely 
control the TEC device, we added a PID controller with 
temperature feedback from the copper block. The feedback 
was provided by a highly accurate RTD sensor that was 
embedded in the middle of the copper block. As described 
previously, a thin layer of thermal grease was added between 
the chip, copper block, and TEC device to ensure efficient 
heat transfer.22 Heating dissipation from the reverse side of 
the TEC device was enhanced by attaching a fan to the alu-
minum heat sink. The speed of the fan was also controlled 
by the PID controller, commensurate with the sink tempera-
ture, using a negative temperature coefficient (NTC) therm-
istor. Previously, the heat ramping was not reliably linear, 
and the standard deviation in chip temperature reached up 
to 1.22 °C at 91.6 °C.22 The addition of the fan and control-
ler improved our ability to precisely heat to higher 

temperatures and allowed us to rapidly cool the chip back to 
room temperature. Fast cooling decreased the wait time 
between two consecutive runs to less than 5 min as com-
pared to a previous 30 min. The use of an off-the-shelf digi-
tal PCR chip did not allow us to place a temperature probe 
inside the chip in use. Therefore, to ensure that the thermal 
control achieved for the copper block efficiently transferred 
to the chip, we monitored the temperature of a surrogate 
chip placed next to our test chip on the copper block. The 
surrogate temperature was reported using a thermocouple 
embedded at its center. The entire chip-heating device 
assembly was held in place inside a custom-designed 
3D-printed stage adaptor to securely mount the device on a 
microscope for imaging (Fig. 1). Although the copper block 
was independently controlled by standalone software, the 
proxy temperature measurement from the surrogate chip 
was synchronized with fluorescent imaging by the micro-
scope control software (NIS-Elements). Synchronizing 
imaging with temperature measurement, however, required 
the use of an NIS-Elements compatible temperature acqui-
sition system (Tokai Hit Co., Japan) using a K-type thermo-
couple probe. This integrated imaging and temperature 
acquisition system limited the resolution of temperature 
measurement to 0.1 °C with a temperature sampling rate of 
~0.2 Hz irrespective of the imaging rate. Therefore, our 
strategy was to precisely control the copper block 

Figure 1.  Schematic and image of a 
universal digital high-resolution melt 
(U-dHRM) platform.
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temperature, establish a repeatable relationship between the 
copper block–embedded RTD and the surrogate chip–
embedded thermocouple, and then use the fitted thermo-
couple temperature data and fluorescence imaging data to 
plot melting curves.

Thermal Controller Characterization

The PID controller provided temperature control of the cop-
per block at the desired ramp rate of 0.1 °C/s. The maximum 
difference between the expected block temperature and 
observed temperature recorded using the RTD embedded 
within the block was measured as 0.004 °C (Fig. 2A). 
Throughout all runs, the expected ramp rate of 0.1 °C/s was 
observed with a maximum root mean square error (RMSE) 
of 0.001 °C (Fig. 2B). This confirmed that precise tempera-
ture control of the copper block was achieved by our new 
heating system.

Next, we investigated the relationship between the block 
temperature and surrogate digital chip temperature. Figure 
3 shows temperature ramp measurements taken using the 
surrogate chip–embedded thermocouple for the same runs 
as depicted in Figure 2A for the copper block–embedded 
RTD. For all runs, the thermocouple measured a ramp rate 
of approximately 0.098 °C/s on the chip, as compared to 
0.1 °C/s measured with the RTD in the block. The relation-
ship between the thermocouple and RTD was highly repeat-
able throughout seven runs (Fig. 2B and Fig. 3A). To test 
the linearity of the slope, we analyzed different temperature 
ranges of the thermocouple readings and found the slope to 
be consistent. This justified the use of a straight-line fit for 
the thermocouple data, revealing a maximum RMSE of 

0.05 °C for the runs (Fig. 3A). Instantaneous heating rates 
on the chip were also analyzed and showed no significant 
deviation (R2 = 1) from linearity due to heat transfer losses 
from block to chip (Fig. 3B). Thus, our design achieved 
precise and linear heating control on the digital PCR chip 
within the accuracy and precision limits of the temperature 
acquisition system.

Melt Characterization with Temperature 
Calibrator Sequences

In theory, if heat ramping is linear and heat transfer is effi-
cient, any inaccuracies in the absolute temperatures mea-
sured during the melting process could be reliably removed 
using temperature calibrator sequences. Such control DNA 
oligos of known Tm can be included in all reactions and 
designed so that they melt outside of the amplicon’s melt-
ing temperature range.24 As long as the heat-ramping rate is 
linear (i.e., of a constant slope), the distance between the 
calibrator Tm and amplicon Tm is reliably maintained. 
Therefore, temperature offset errors occurring from run to 
run or well to well because of imperfections in temperature 
control or uniformity can be removed by simply shifting 
each melt curve to align the calibrator Tm peaks with their 
correct melting temperature. Characterization of the ther-
mal controller revealed highly linear and repeatable heat 
ramping on an empty chip. To further characterize the reli-
ability of heat transfer and DNA melting in a loaded chip, 
we used three synthetic oligo sequences with predicted Tm 
in the range of ~57–93 °C to generate melt curve data for 
run-to-run and well-to-well variability analyses. These 
temperature calibrator sequences varied in GC content and 

Figure 2.  Controller performance. (A) Box plot of error (observed temperature minus expected temperature) for the copper 
block throughout all runs with the temperature calibrator at a ramp rate of 0.1 °C/s. Red crosses denote outliers that are larger 
than the 75th percentile plus 1.5× the interquartile range or smaller than the 25th percentile minus 1.5× the interquartile range. This 
corresponds to approximately ±2.7σ and 99.3% coverage, assuming normal distribution of the data. At least 2000 wells per chip were 
used per run. (B) Table with the slope and root mean square error (RMSE) for each run shows the highly reproducible ramp rate of 
0.1 °C/s throughout runs, with an average RMSE of 0.001 °C.
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length to achieve high (~92.9 °C), mid (~62.8 °C), and low 
(~57.3 °C) melting temperatures. Each well on the chip 
received these three calibrator sequences, such that three 
melt curves were generated within each well. For this anal-
ysis, melt curves were generated on-chip at a heating rate 
of 0.1 °C/s for seven replicate runs over several days. 
Figure 4A shows plots of the calibrator sequences’ melt 
curves from individual reaction wells grouped by run.

Variation in Melt Linearity.  To assess the linearity of the heat 
ramp and melting behavior in a loaded chip, we noted that 
variation would manifest as stretching or compression of 
the melting curves along the temperature axis. This can be 
quantified by measuring the temperature intervals between 
the calibrator Tms, as shown in Figure 4. If linearity is con-
sistent, any offset temperature errors from run to run could 
be overcome by simply shifting the melt curves along the 
temperature axis to align calibrator Tm peaks to match pre-
dicted values. Therefore, to assess melt linearity, we first 
applied a peak detection algorithm to the derivative melt 
curves from each well (Fig. 4A) to find the Tms in a ±3 °C 
region around the predicted Tm for each calibrator sequence 
(uMelt25: Tm-low 57.3 °C, Tm-mid 62.8 °C, and Tm-high 
92.9 °C). Then, we plotted these Tm intervals per chip and 
compared them throughout seven runs (Fig. 4B). Variations 
in the mean from run to run reveal slight stretching (higher 
mean interval) or compressing (lower mean interval) of the 
melt curves along the temperature axis. We next calculated 

the standard deviation of these mean Tm-intervals. The Tm-
intervals varied among runs with a standard deviation less 
than 0.1 °C. As another metric of variability, we compared 
the spread of the Tm-intervals per run by calculating the 
median absolute deviation (MAD) of each well’s Tm-
interval to the mean Tm-interval for that run. Figure 4C 
shows that Tm-intervals vary by approximately ~0.1 ± 
0.02 °C. These metrics show that the slight stretching or 
compressing of the temperature axis from run to run is very 
close to achieving the performance goal of resolving 0.1 °C 
differences in Tm. This performance was also within the 
expected accuracy and precision limits of the combined 
temperature acquisition system (see System Design) and 
imaging system.

Variation in Melting Temperature.  We next sought to charac-
terize the variability of the melting temperatures from well 
to well. These differences should not depend on the heat 
ramp but rather on local thermal gradients, loading differ-
ences, and evaporation anomalies throughout the chip. To 
assess well-to-well variability, we first identified the high, 
mid, and low calibrator Tm in each well. Then, we compared 
each well’s Tm values to the mean Tm for the chip. Compar-
ing to the mean of each chip allowed us to repeat this assess-
ment for several chips and ignore potential offset errors from 
chip to chip. We found that the high-temperature calibrator, 
Tm-High, displayed lower well-to-well variability in all 
seven chips compared to Tm-Mid and Tm-Low (Fig. 5A). 

Figure 3.  Surrogate chip behavior. 
(A) Slope and root mean square 
error (RMSE) of fitted thermocouple 
temperature for each run. The slope 
of the entire run is close to the slope 
for data in three sections, justifying 
the use of a straight-line fit. RMSE 
was calculated by comparing the 
polynomial fit with degree 1 and 
observed data. (B) Instantaneous 
ramp rate of acquired thermocouple 
measurements.
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The largest MAD within a chip for Tm-High was 0.1 °C, in 
comparison to the higher values of 0.13 °C, and 0.14 °C 
observed for Tm-Mid and Tm-Low, respectively. This cali-
brator-specific variability can be easily visualized as a scat-
terplot of the differences in Tm-High and Tm-Mid from their 
representative mean Tm values (Fig. 5B), in which more 
wells show a higher difference from the mean for the mid 
calibrator (y-axis spread in Fig. 5B) than for the high cali-
brator (x-axis spread in Fig. 5B). Furthermore, Tm-Low 
behaved like Tm-Mid (Suppl. Fig. 2). To further investigate 
the wells with large differences from the mean, we plotted 

the spatial location of the wells on the chip as a heat map, 
coloring each well according to the difference of its Tm from 
the mean value on the chip (Fig. 5C, chip corners shown). 
This showed higher variability in Tm-Low and Tm-Mid as 
compared to Tm-High throughout the chip reactions, with 
most outliers (> ±2.7 SD) located around the edges and cor-
ners of the chip. Analysis of the ROX reference dye intensity 
throughout the chip also revealed wells with significantly 
lower intensity located at the edges and corners (Suppl. Fig. 
3). This pattern was not, however, correlated with Tm vari-
ability (Fig. 5C). Importantly, this effect is also not due to 

Figure 4.  Controller performance using three temperature calibrators with known melting temperatures. (A) Negative derivative 
of melt (EvaGreen normalized by ROX) with respect to temperature for temperature calibrator sequence. The figure shows the 
difference between the melting temperature (Tm)-intervals and their denotation. (B) Means of difference in Tm intervals are shown. 
(Left) Difference between Tm-High and Tm-Low (Tm-interval-HL), (middle) Tm-High and Tm-Mid (Tm-interval-HM), and (right) 
Tm-Mid and Tm-Low (Tm-interval-ML). (C) Intrarun variability associated with each run. Median absolute deviation (MAD) for (left) 
Tm-interval-HL, (middle) Tm-interval-HM, and (right) Tm-interval-ML. The MAD varied from 0.1 to 0.11, from 0.09 to 0.12, and from 
0.11 to 0.14 for Tm-interval-HL, Tm-interval-HM, and Tm-interval-ML, respectively.
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uneven illumination throughout the field, because rotating 
and translating the chip in the field of view do not alter the 
pattern. Together, these results suggest that the high calibra-
tor sequence may be inherently less susceptible to variation 
in melting than the low and the mid calibrator sequences. 
Furthermore, there is a spatial dependence of variability 
coinciding with the well location on the chip at the edges.

Ramp Rate Dependence of Melt Curves

Having characterized the reliability of our melting device 
and validated its performance, we next sought to investigate 
the dependence of the melt curve characteristics on ramp 

rate. Because our goal is to use melt curves to profile het-
erogeneous samples for multiple genotypes, we wanted to 
understand whether ramp rates could be optimized to 
enhance the effect of sequence differences on melt curve 
features. As a model genotyping task, we performed these 
experiments with bacterial DNA amplified from the 16S 
rRNA gene that included the hypervariable regions 1–6 
(~1 kb in length). Typical quantitative PCR (qPCR) reac-
tions target amplicon size to 200 base pairs or fewer for 
optimal amplification efficiency to enable accurate quanti-
fication. Because dPCR is an endpoint reaction, however, 
efficiency is not a top priority, and longer amplicons can be 
targeted at the expense of more PCR cycles. We prefer 

Figure 5.  Intrarun variability. (A) Variation in (left) Tm-High, (middle) Tm-Mid, and (right) Tm-Low. Variation was calculated as the 
difference in Tm for each well about the mean Tm of the chip. Red crosses denote outliers that are larger than the 75th percentile plus 
1.5× the interquartile range or smaller than the 25th percentile minus 1.5× the interquartile range. This corresponds to approximately 
±2.7σ and 99.3% coverage, assuming normal distribution of the data. At least 2000 wells per chip were used per run. (B) Variation 
in Tm-Mid plotted against variation in Tm-High. Figure shows a greater variation in Tm-Mid as compared to Tm-High. (C) Variability in 
(left) Tm-High, (middle) Tm-Mid, and (right) Tm-Low with respect to the spatial location of wells on the chip for a characteristic run. 
Absolute temperature difference about the mean Tm of the chip is shown in false color, as indicated in the key to the bottom.
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longer amplicons for melt-based sequence identification 
because we have previously observed that longer sequences 
generate more unique melt curves.26 Here, we chose 
Acinetobacter, Moraxella, and Salmonella genomic DNA as 
our templates because we have previously observed that 
their long-amplicon 16S sequences melt uniquely with 
either one or two transitions at a ramp rate of 0.1 °C/s in 
bulk qPCR reactions.8,26

First, we generated 16S amplicons on three independent 
chips for each bacterium. These chips were then used to 
generate melt curves at ramp rates of 0.01 °C/s, 0.05 °C/s, 
0.1 °C/s, and 0.2 °C/s. We adjusted our imaging settings to 
maintain 0.1 °C resolution in fluorescence measurement by 
matching the imaging rate to the heating rate (Table 1). To 
ensure that our thermal control was accurate for varying 

ramp rates, we observed the temperature profile in the proxy 
chip and in the copper block. These profiles were like what 
was seen for a ramp rate of 0.1 °C/s, reported above. The 
slopes of the block temperature and fitted chip temperature 
were repeatable throughout all ramp rates, and there were 
negligible deviations in instantaneous rates throughout the 
runs (copper block and surrogate chip behavior for all ramp 
rates is shown in Suppl. Fig. 4 and Suppl. Fig. 5).

The 16S amplicons for Acinetobacter baumannii 
revealed multiple melt domains for higher ramp rates of 
0.1 °C/s and 0.2 °C/s. A single melting domain was, how-
ever, observed for 0.01 °C/s, as seen in Figure 6A. The sec-
ond derivatives of the melt curves further highlight the 
difference in curve shape at different rates (Fig. 6B). Similar 
rate-dependent melting (RDM) behavior was seen with 

Figure 6.  Rate dependence of melt curves in bacteria with one or more melt transitions. (A) Negative first-order derivative of 
melt with respect to temperature for Acinetobacter baumannii. (B) Second-order derivative of melt with respect to temperature. (C) 
Negative first-order derivative of melt with respect to temperature for Moraxella catarrhalis. (D) Second-order derivative of melt 
with respect to temperature. (E) Negative first-order derivative of melt with respect to temperature for Salmonella enterica serovar 
Heidelberg. (F) Second-order derivative of melt with respect to temperature. The melt curves generated at different rates were 
aligned to their Tm to compare the shapes among different melt rates.
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Moraxella catarrhalis (Fig. 6C and 6D). Salmonella 
enterica serovar Heidelberg amplicons, however, showed 
no significant RDM (Fig. 6E and 6F), and neither did S. 
enterica serovars Enteritidis and Typhimurium for two 
chips (Suppl. Fig. 6). Statistically significant differences in 
curve shape (skewness) were observed for A. baumannii 
(p < 0.005) between the melt rates of 0.01 °C/s and 0.2 °C/s, 
but not for S. enterica Heidelberg (p = 0.6). Our previously 
published machine learning algorithm for automated melt 
curve genotyping was able to differentiate between melt 
curves generated at 0.01 °C/s and 0.2 °C/s for A. baumannii 
with ~97% accuracy. It failed to differentiate melt curves 
for S. enterica Heidelberg at 0.01 °C/s and 0.2 °C/s (~60% 
accuracy), which is consistent with the fact that these curve 
shapes did not appear to change with rate. This indicates 
that the sequence specificity of the RDM phenomenon 
could be an additional feature used for melt-based sequence 
identification.

Discussion

We have successfully designed and characterized a high-
throughput digital melt platform capable of generating up to 
20,000 high-resolution melt curves in about 5 min. Our 
design achieves highly repeatable temperature profiles for a 
range of melt rates and commensurate imaging frequencies. 
The run-to-run errors we observed were within the expected 
theoretical error limits of our system, approximately 
0.14 °C. Precision in temperature control is an important 
factor for resolving melt curves. Imaging systems can, how-
ever, contribute to melt errors as well. The resolution of our 
imaging system is one image per 0.1 °C. Thus, the mini-
mum total RMSE error due to imaging (±0.05) and heating 
(±0.05) for our system is expected to be ±0.07 °C. These 
error limits can be improved with the development of a cus-
tom optical system with integrated and tunable image and 
temperature acquisition capabilities. This, in addition to 
increasing our sampling rate for fluorescent data acquisi-
tion, would enhance the device’s ability to resolve smaller 
Tm differences.

The reliability and performance of our heating and hard-
ware system enabled us to identify and characterize other 
sources of melt variation. Understanding well-to-well vari-
ation throughout the chip is crucial for absolute load quan-
tification and sequence profiling at single-genome 
sensitivity. We observed that wells producing outlier Tm 
peaks are typically present at the corners and along the 
edges of the chip, as shown in Figure 5B. These outliers 
could represent reactions in which evaporation has altered 
the chemistry of the reaction (specifically, the concentration 
of ions can shift Tm)27,28 or a spatial temperature gradient on 
the chip due to chip design. Heating-induced oil flows 
around the edges of the suspended reaction chip could also 
be a source of variability at the edges. Analysis of the ROX 

reference dye intensity throughout the chip revealed a dif-
ferent pattern of outliers with significantly lower intensity 
located at the edges and corners, indicating that evaporation 
may be present but is not the primary factor influencing Tm 
variability.

Compared to conventional PCR, smaller dPCR reaction 
volumes could be expected to lead to larger variations in 
Tm due to evaporation. The small form factor of the digital 
chip is, however, expected to maintain a more uniform 
thermal gradient throughout the chip, leading to smaller 
variations in Tm. A previously published study reported Tm 
differences ranging from 0.35 °C to 1.24 °C among 
32–96-well-plate melt instruments with standard devia-
tions of 0.018 °C to 0.274 °C.23 In comparison, after 
excluding the outliers at the corners and edges of our 
chips, differences in the high-temperature calibrator Tm on 
our digital melt platform were observed to vary from 
0.22 °C to 0.6 °C. This represents a significant improve-
ment in heating uniformity compared to the standard well-
plate format. Even with outliers included, a MAD ranging 
from 0.05 to 0.1 °C and a standard deviation of 0.06–
0.13 °C were observed throughout the chip, which are less 
than those of the well-plate format.

Our observation that the Tm-Low and Tm-Mid for the 
temperature calibrator sequences were more variable than 
the Tm-High calibrator (Fig. 5) is important for understand-
ing the utility of these oligos as internal melt controls. The 
most challenging melt genotyping task, resolving class IV 
single-nucleotide polymorphisms (SNPs; A>T), typically 
requires resolving 0.1 °C differences in Tm. Because the 
largest MAD within a chip for Tm-Mid, Tm-Low, and Tm-
High was 0.13 °C, 0.14 °C, and 0.1 °C, respectively, using 
these calibrators for melt curve normalization would intro-
duce unacceptable error. As seen in Figure 5C, the high 
variability in Tm-High was largely limited to the chip cor-
ners. The variability in Tm-Low and Tm-Mid was observed 
throughout the chip, however, as well as at the corners. This 
additional variability is likely inherent to these calibrator 
sequences. Others have shown that the melting temperature 
of DNA sequences can vary dramatically if the melting pro-
cess does not proceed through equilibrium. Because the 
transmission of heat to the reaction chambers is not instan-
taneous, the sample temperature may not reach equilibrium. 
Even in cases of extremely slow heating, slow relaxation 
processes during melting transitions can proceed out of 
equilibrium, and DNA sequences, especially those with 
multiple intramolecular binding conformations, can exhibit 
variation and hysteresis in their melting behavior.29–31 
Physical models of DNA melting behavior predict that AT 
duplexes go through several cycles of hydrogen bond  
breakage and reformation, often involving an overall shift 
by one or more bases along the helix, before fully and 
finally disassociating. In contrast, the corresponding GC 
duplexes usually come apart only once.32 Here, the low and 
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mid calibrators have lower GC content (0 and 12%, respec-
tively) and are also shorter in length compared to the high 
calibrator (76% GC). DNA dissociation rates are also 
known to increase exponentially with temperature.33,34 
Taken together, this suggests that it may be possible to 
design more reliable low- and mid-temperature calibrators 
by using very short GC-rich sequences.

Heating rate changes typically result only in shifts in 
melt curve Tm, whereas the dynamic melting characteris-
tics of a PCR product are thought to be primarily deter-
mined by GC content, sequence length, and nucleotide 
order.35,36 Our study revealed that some long (>1000 kb) 
amplicons are, however, highly sensitive to melting ramp 
rate, which not only shifts their Tm but also changes the 
number and size of distinct melting transitions present. For 
the long-amplicon sequences we studied, slower heating 
rates typically resulted in a single melt transition, whereas 
faster rates generated multiple melting domains. This 
response to heating rate was, however, highly sequence 
dependent. Thus, the response of a long amplicon to heat-
ing rate changes provides additional sequence-specific 
information that could enhance the specificity of melt 
curve–based sequence profiling. The mechanism underly-
ing these differences may involve kinetic sampling of tran-
sition states. For example, slower rates would be expected 
to enable amplicons to sample a wider range of transition 
states, in which shifting, reorganized binding, or secondary 
structure formation could effectively average out the fluo-
rescence decay among the bulk population of amplicons. 
Faster rates may induce more uniform transition behavior 
involving abrupt local DNA “bubbles” that melt separately 
at a different temperature from the remainder of the 
sequence. Indeed, faster rates of melting are associated 
with higher Tm accuracy in homozygous melt analysis.37 
Alternatively, because heteroduplex melting is more appar-
ent at faster heating rates, the multiple melt domains we 
observe at faster ramp rates may be the result of distinct 
heteroduplex binding transition states induced in homodu-
plex molecules.37

In conclusion, our novel platform advances the concept 
of digital melt curve–based sequence profiling and could 
also support fundamental studies of DNA dissociation 
kinetics. The ability to rapidly screen a heterogeneous sam-
ple of nucleic acids for the presence of a variety of geno-
types could be applied to infectious disease diagnostics, 
cancer mutation and methylation analysis, viral mutation 
tracking, and microbiome population studies.
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