An Optimizer’s Approach to Stochastic Control Problems with Nonclassical Information Structures

Ankur A. Kulkarni\(^1\) and Todd P. Coleman\(^2\)

Abstract

We present a general optimization-based framework for stochastic control problems with nonclassical information structures. We cast these problems equivalently as optimization problems on joint distributions. The resulting problems are necessarily nonconvex. Our approach to solving them is through convex relaxation. We solve the instance solved by Bansal and Başar [2] with a particular application of this approach that uses the data processing inequality for constructing the convex relaxation. Using certain f-divergences, we obtain a new, larger set of inverse optimal cost functions for such problems. Insights are obtained on the relation between the structure of cost functions and of convex relaxations for inverse optimal control.

I. MOTIVATION AND CONTRIBUTION

This paper concerns the following stochastic control problem with nonclassical information structure: minimize

$$J(\gamma_0, \gamma_1) = \mathbb{E} \left[\kappa(S, X, Y, \hat{S}) \right],$$

$$X = \gamma_0(S), \quad Y = \phi(X, W), \quad \hat{S} = \gamma_1(Y),$$

where S, W are random variables with fixed statistics, ϕ is a fixed measurable function, X, \hat{S} are constrained by the information structure, i.e., X is adapted to S alone and \hat{S} is adapted to Y alone, and the decision variables are measurable functions γ_0, γ_1 (Fig 1). In general, these

\(^1\)Ankur is with the Systems and Control Engineering group at the Indian Institute of Technology Bombay, Mumbai, India 400076. kulkarni.ankur@iitb.ac.in. The contents of this paper were presented in part at the IEEE Conference on Decision and Control, 2012 at Maui, Hawaii, USA [1].

\(^2\)Coleman is with the Department of Bioengineering, University of California, San Diego, La Jolla, CA USA. tpcoleman@ucsd.edu.
problems are challenging to solve. For example, if $\kappa(S, X, Y, \hat{S}) = (S - X)^2 + (X - \hat{S})^2$, $Y = X + W$ and S, W are Gaussian, then this becomes the long standing open problem of Witsenhausen [3] about which many fundamental issues remain to be clarified.

In 1987, Bansal and Başar [2] solved a nontrivial problem with this information structure. They consider the case where the problem is to minimize

$$\kappa(S, X, Y, \hat{S}) = k_0 X^2 + s_{01} XS + (\hat{S} - S)^2,$$

where $Y = X + W$, $S \sim \mathcal{N}(0, \sigma_0^2)$, $W \sim \mathcal{N}(0, \sigma_w^2)$ are independent Gaussian random variables and $k_0 > 0$ is a scalar constant. Their approach was to interpret Fig 1 as a communication system where γ_0 and γ_1 are the encoder and decoder, respectively, and then use information-theoretic bounds to obtain a solution. An important aspect of their proof is that it relies critically on the information-theoretic data processing inequality (DPI). This remains the only known logic to proving optimality for problem B [4]. It is evident that ascertaining if there is some aspect of this proof that can be generalized to other instances of \mathbf{N} would involve first understanding the role of the DPI in this problem.

Our objective in this paper is to show how certain optimisation-based perspectives can be used to understand problems like \mathbf{N}. We show that these problems are essentially nonconvex and develop an approach for them based on convex relaxation. This approach yields a convex-analytic framework for inverse optimality for \mathbf{N} which subsumes previous information-theoretic results. The solution of \mathbf{B}, which was obtained in [2] by appealing to communication theory, is obtained as a special case of this convex relaxation approach by using the DPI for convexifying the problem. This viewpoint yields a broader interpretation of the role of the DPI in \mathbf{B} and an explanation for what makes \mathbf{B}, which is prima facie only a slight modification of the Witsenhausen problem [2], tractable, even while the Witsenhausen problem itself remains unsolved.
A. Main new results and insights

This paper argues that common to all problems \mathbb{N} is a fundamental nonconvexity that germinates from the information structure of these problems. We show that \mathbb{N} is equivalent to an optimization problem where the expected cost is minimized over the joint distribution of all variables but where γ_0 and γ_1 are allowed to be random. This problem has a linear objective and necessarily nonconvex constraints. Analogous formulations for problems with classical information structure lead to convex optimization problems. Nonconvexity implies that a general purpose approach for solving \mathbb{N} is not obvious. A possible solution strategy is to construct a convex relaxation with the same objective and a larger and convex feasible region. This problem being convex is potentially more accessible. The strategy then is to find a solution of the relaxation that is feasible for \mathbb{N}, which would thereby be a solution of \mathbb{N}.

We show that although \mathbb{B} is a nonconvex problem, there is a convex relaxation of \mathbb{B} which can be solved to obtain a solution that is feasible for \mathbb{B}. Implicit in the proof of Bansal and Başar is the use of the variational equations for the rate-distortion and capacity-cost function and their relation using the DPI. While we also use the DPI, in our proof only its convexity properties are needed in solving \mathbb{B} (the construction of the relaxation involves the DPI); no communication-theoretic properties are required. Consequently, the DPI serves only as an artifice for convexifying the problem and as such may be replaced by any other suitable means of convexification. It is plausible that other convexifications would yield other solutions of \mathbb{B} or solutions to other variants of \mathbb{N}.

Indeed such solutions are readily obtainable for the problem of inverse optimal control in which cost functions, for which a candidate policy is optimal, are sought. This problem is useful when one knows a policy adopted by controllers (suggested by, say, experimental data), and these controllers are known to be acting “optimally” according to some unknown criterion which one would like to determine (see e.g., [5]). With the convex relaxation viewpoint, we show that the standard set of inverse optimal cost functions obtained via information-theoretic arguments correspond to those with the convexification using the DPI. However using other divergences, such as certain f-divergences, we obtain a new, larger set of inverse optimal cost functions. As such, these results provide a general purpose framework to propose other convexifications that will lead to similar formalisms.
Specifically for problem B, our results amount to a new proof of optimality – our proof does not use the Cauchy-Schwartz inequality or parametrization (which are two of the steps in [2]). The tractability of B is explained by the fact that even though B is equivalent to a nonconvex optimization problem, it admits a known convex relaxation that is tight for it. Furthermore, we show that if a certain nondegeneracy condition holds, equality in the DPI is a necessary condition for optimality in B. Consequently, any other proof of optimality of B must imply this equality, even though the DPI may not have been explicitly employed in the proof. This partially settles the open problem [4] of ascertaining whether there is a way of solving B that does not use the DPI.

Finally, by convex relaxation we give a lower bound on the Witsenhausen problem and a result that indicates that a certain “easy” solution approach cannot succeed for it.

B. Theoretical explanation of the results

There exists an optimization-based approach for Markov decision processes (stochastic control problems with classical information structures), where one optimizes the expected cost over distributions on state-action spaces, called occupation measures (see e.g., [6], [7]). The relaxation of deterministic codes to random codes is a logical extension of this approach to problem N. We minimize the expected cost over distributions that are consistent with the given marginals and that respect the information structure of the problem. But while the constraints in the classical information structure result in a convex (in fact, linear) program, in problem N, the nonclassicality of the information structure implies the nonconvexity of the corresponding optimization problem.¹

Problem B is also nonconvex, but it happens to share its solution with a specific relaxation. To explain this, consider problems (1) and (2) where v is a vector, \(C' \) is a nonconvex set and \(C \supset C' \) is a convex set. The convex relaxation (2) of (1) is exact (or successful) if the solution of (2) lies within \(C' \). This coincidence occurs in problem B if the set \(C \) is formed using the DPI. In general, an optimal solution of \(C \) may not lie in \(C' \) (as depicted by point \(\bar{z} \) in Fig 2).

¹One may think of this as a different perspective on the observation that nonclassical problems like N are harder than those with classical information structure.
The point z^* is optimal for both (2) and (1). \bar{z} is optimal for (2) but is not feasible for (1).

\[
\min_{z \in C'} v^\top z, \quad (1) \quad \min_{z \in C} v^\top z, \quad (2)
\]

The notion of inverse optimality seeks cost functions (the vector v) for which a candidate solution z^* is optimal; let and $\mathcal{I}(z^*; C')$ and $\mathcal{I}(z^*; C)$ be this set of functions for (1) and (2) for some $z^* \in C'$. z^* is a solution of (2) if and only if $-v$ belongs to $N(z^*; C)$, the normal cone of C at z^* (these are vectors “normal” to C and pointing outwards; see Fig 2 and [8] for the details), whereby $\mathcal{I}(z^*; C) = - N(z^*; C)$. For v to be inverse optimal for (1), it is sufficient that $-v$ lies in $N(z^*; C')$ (the normal cone of C' at z^*, cf. Fig 2), whereby $-N(z^*; C') \subseteq \mathcal{I}(z^*; C')$. Since $C \supset C'$ we have the relation

\[
N(z^*; C) \subseteq N(z^*; C'), \quad (3)
\]

and thus, $\mathcal{I}(z^*; C) \subseteq \mathcal{I}(z^*; C')$. In summary, if $z^* \in C'$ solves (2), cost functions which are now inverse optimal for (2) are guaranteed to be inverse optimal for (1). In general this inclusion is strict. The challenge posed by nonconvexity of C' is that it makes $N(z^*; C')$ hard to characterize. One can in general give only necessary conditions for inverse optimality for (1): e.g., KKT conditions yield a set of functions (denoted by $T(z^*; C')^*$, the dual of the tangent cone, in Fig 2) that is larger than $\mathcal{I}(z^*; C')$. On the other hand, for the convex problem (2) the KKT conditions give $-N(z^*; C)$ exactly.

The relation (3) holds for any convex set C containing C'. Thus one gets a suite of inverse optimal cost functions by varying the convex set employed for creating the relaxation. In our case, the convexification with the DPI provides one set of inverse optimal cost functions for a variant of \mathcal{B} (with $s_{01} = 0$). In fact it provides a stronger form of inverse optimality where
‘distortion-like’ and ‘cost-like’ terms are separately obtained. Suppose one asks for v_1 and v_2 where v_1, v_2 lie in given orthogonal subspaces such that $v = v_1 + v_2$ is inverse optimal for (1). v_1, v_2 are obtained as the projection of the normal cone along these subspaces, which can be obtained cleanly if C has a favorable structure. In B with $s_{01} = 0$, the DPI allows the inverse optimal distortion and cost to be separately unravelled. This is because of the agreement between the structure of the DPI and the structure of these terms.

By replacing the K-L divergence with other suitable f-divergences, one can vary the choice of the set C and obtain a larger set of inverse optimal cost functions, wherein f is also a parameter defining these functions.

The above convex analytic arguments are distinct from the information-theoretic arguments that have been applied for lower bounding problems like N^2. The latter argument involves embedding N into a problem that permits infinite delay (i.e., arbitrary block lengths) which is then subjected to information-theoretic analysis. This is somewhat unsatisfactory because, firstly, the appearance of mutual information is a likely consequence of the infinite block length problem, whereby the method is somewhat inflexible. And, secondly, the bounds will often be too loose (see Witsenhausen’s discussion on this topic [10, Section 8] and Ho et al. [9]). Convex relaxation provides a broader paradigm for obtaining bounds for N. And for problem B, which is the most general problem we know of to have been solved by the above information-theoretic approach, the convex relaxation based bounds include the information-theoretic bounds as a special case (amounting to specific choice of the convexification).

C. Background and organization

There are two main contributions from our work. First, convex relaxation can be seen more generally as an approach for problems with nonclassical information structure. Second, in the particular case of problem B our work clarifies certain issues, including its hardness and the role of the DPI in its solution. Given the limited space available here, we present some background relevant only to these aspects of our work.

Problem N is a stochastic control problem with a dynamic information structure [11], i.e., where the information of the latter-acting decision maker is dependent on the actions of the

\footnote{To quote Ho et al. [9, p. 307, footnote 5] “There exist no general sufficiency conditions to verify the optimality of a solution (of a problem like N) besides the Shannon bounds”}
earlier-acting decision maker. In addition, the latter-acting decision maker \(\gamma_1 \) does not know what the earlier-acting decision maker \(\gamma_0 \) knows, whereby the information structure of \(N \) is not partially nested [11], [12], [13]. \(N \) is perhaps the simplest example of a problem with a dynamic information structure that is not partially nested.

The famous counterexample of Witsenhausen [3], a special case of \(N \), showed that LQG problems with the information structure of \(N \) need not have a linear optimal controller. This has prompted a line of research asking, “When is an optimal controller linear?” [14], and the result of Bansal and Başar [2] was one of the most general results along this direction. Prior to [2] it was known that for the Gaussian test channel (i.e. \(B \) with \(s_{01} = 0 \)), the optimal codes are linear; in [2] they extended this to the case where \(s_{01} \neq 0 \). In a later paper [15] they consider an extension of \(B \) where the channel is vector-valued. In yet another extension [16], they consider a system with dynamics and feedback. In both problems [15], [16], the optimal controllers are found to be linear and in each of these proofs the DPI was used as a key ingredient. It remains an open problem to ascertain if there is another way of proving optimality for \(B \) that does not use the DPI [4]. In this context, our work shows that in the solution of \(B \) the DPI is only an artifice for convexifying the problem, and as such may be replaced by any other suitable convex set. However equality in the DPI is a necessary condition for optimality in \(B \), so any other proof must imply this equality.

Finding the optimal controller within the class of linear controllers for a decentralized LQG problem is also not straightforward; this problem can be cast as a minimization of the \(H_2 \)-norm of the closed-loop map over all gain operators (matrices) that satisfy a sparsity constraint (the sparsity pattern is dictated by the information structure [17], [18]), and is often nonconvex. Over the past decade, there has been an explosion of results surrounding the concept of quadratic invariance [19] – an algebraic condition imposed on the sparsity pattern which allows the reformulation of this norm minimization as a convex problem. Fascinatingly, quadratic invariance was shown to be closely related to partially nested information structures [20], [21].

In problems like \(N \), a fundamental challenge is of understanding what makes these problems intractable. For example, one may conclude, that since the argument of \(\gamma_1 \) depends on the value of \(\gamma_0 \), and \(\gamma_1 \) does not have access to the argument of \(\gamma_0 \), problem \(N \) is essentially an optimization of \(J(\gamma_0, \gamma_1(\gamma_0)) \) over \(\gamma_0, \gamma_1 \) [11]. This is clearly a nonstandard problem in optimization over functions. Furthermore, it is a nonconvex problem in \(\gamma_0 \) whenever \(\gamma_1 \) is not linear or a suitable
function [11], [3]. To quote Ho [11, p. 648], “The computational as well as theoretical difficulties sketched above makes (P3) (i.e., N) a most difficult problem. It is still unsolved today, some 12 years\(^3\) after Witsenhausen first analyzed it. In fact, ... we do not even have a sufficient condition for optimality for (P3) similar to the usual second variation condition in function optimization. Optimization problem of the type \(J(\gamma_0, \gamma_1(\gamma_0))\) involving composition of the optimizing functions simply have not been studied with any kind of systematic effort.” \(^4\)

The above explanation for the hardness of N is somewhat unsatisfactory since it does not explain the differences in the degree of hardness of instances of N. In particular, note that while we know little about the solution of the Witsenhausen problem, for the Bansal-Başar problem B, which is a slight variant of the Witsenhausen problem, we do know the solution. This raises the natural question: what makes the Bansal-Başar problem tractable? To the best of our knowledge, an answer to this question from the viewpoint of optimization over functions is not known. Bansal and Başar [2] have made the observation that the presence of a term in \(\gamma_0\gamma_1\) makes the Witsenhausen problem hard. However this does not yet explain what makes B tractable.

Our work shows that N is equivalent to a nonconvex optimization problem in the space of joint distributions. Importantly, this result does not rely on the structure of the cost \(\kappa\), but is a consequence of the information structure of N. The tractability of B is then explained by the fact that, although it is a nonconvex problem, there happens to be a convex relaxation that is tight for it.

A closely related paradigm where one optimizes over joint distributions that are constrained to be consistent with given marginals is the subject of optimal transport theory \([23]\). The framework presented here may be seen as optimal transport with additional constraints which arise from the information structure. Recent work of Wu and Verdú \([24]\) also casts the problem as an optimization over distributions, but the eventual problem they address has a different formulation from ours. Their focus is specifically on the Witsenhausen problem; they exploit the quadratic structure of the cost function and their newly discovered properties of the MMSE estimator \([25]\). With this, they can relate the Witsenhausen problem to a standard optimal transportation problem.

\(^3\)Now, 45 years ...

\(^4\)On another note, we recall the effort of Papadimitriou and Tsitsiklis \([22]\) to understand the hardness of the Witsenhausen problem through the lens of computational complexity.
with quadratic cost, to characterize properties of an optimal solution.

At the heart of problems like N is the interplay of information and control [26], signalling and the dual role of control [4]. These problems have inspired an ongoing search for an understanding of the role of information in control [27], [28]. Indeed, a related line of research attempts to do dynamic programming for problems with various information structures [29], [21]. We are not explicitly concerned with these aspects of N.

This paper is organized as follows. In Section II-A, we recall some preliminaries, the proof of Bansal and Bašar and the communication-theoretic approach to problems like N. Section III contains the optimization formulation, convex relaxation and the solution of B. Section IV concerns inverse optimal control and Section V concerns the convex relaxation of the Witsenhausen problem. We conclude in Section VI.

II. PRELIMINARIES

In this paper by probability “distributions” of random variables we mean (joint) densities if the random variables are continuous and probability mass functions if they are discrete. We use lower case letters to denote specific values of random variables, which are denoted by upper case latters. For a distribution \(Q \), ‘\(Q_x \)’ denote the marginal of ‘\(\bullet \)’. Whenever required, we abbreviate ‘\(Q_Y(v) \)’ as ‘\(Q(v) \)’. Let \(P, Q \) be any two probability distributions on a finite set \(\mathcal{X} \). K-L divergence of \(P \) and \(Q \) is defined as \(D(P||Q) = \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)} \); in this paper \(\log \) will denote the natural logarithm. If the underlying random variables are continuous and \(P, Q \) are densities, then \(D(P||Q) = \int_{\mathcal{X}} \log \left(\frac{P(x)}{Q(x)} \right) P(x) \, dx \). For random variables \(X, Y \) with joint distribution \(Q \) the mutual information of \(X \) and \(Y \) is defined as \(I(X;Y) = D(Q||Q_XQ_Y) \).

If \(W, X, Y \) form a Markov chain, we write it succinctly as \(W \rightarrow X \rightarrow Y \). Mutual information satisfies the data processing inequality for Markov chains [30]

\[
I(W;X) \geq I(X;Y).
\]

Consequently, if \(W \rightarrow X \rightarrow Y \rightarrow Z \), then \(I(X;Y) \geq I(W;Z) \).

Finally, for an optimization problem \(\mathbf{P} \) we denote the system of KKT conditions for this problem by \(\text{KKT}_\mathbf{P} \) and the optimal value by \(\text{OPT}(\mathbf{P}) \).
A. The problem of Bansal and Başar

We begin by recalling the proof from [2]. Bansal and Başar interpret B as a problem of minimizing the distortion $\hat{S} - S)^2$ in a communication system subject to soft constraints on power X^2 and XS. Their proof [2, section III] uses the following series of arguments:

1. The DPI implies $I(S; \hat{S}) \leq I(X; X + W)$.

2. Standard results about Gaussian channels give that, under the constraint $\mathbb{E}[X^2] \leq P^2$,

$$\frac{1}{2} \log \frac{\sigma_0^2}{\mathbb{E}[(\hat{S} - S)^2]} \leq I(S; \hat{S}) \leq I(X; X + W) \leq \frac{1}{2} \log \frac{P^2 + \sigma_w^2}{\sigma_w^2}. \quad (5)$$

Combining these gives a lower bound on the distortion: $\mathbb{E}[(\hat{S} - S)^2] \geq \sigma_0^2 \sigma_w^2 + \frac{\sigma_0^2 \sigma_w^2}{P^2 + \sigma_w^2}$.

3. Cauchy-Schwartz inequality gives a lower bound on the third term $s_{01} \mathbb{E}[XS] \geq -|s_{01}| P \sigma_0$. Thus the optimal value of B, J^* is bounded below as $J^* \geq \frac{\sigma_0^2 \sigma_w^2}{P^2 + \sigma_w^2} + k_0 P^2 - |s_{01}| P \sigma_0$, where P^* satisfies

$$(2k_0 P^* - |s_{01}| \sigma_0)(P^{*2} + \sigma_w^2) = 2P^* \sigma_0^2 \sigma_w^2. \quad (7)$$

Finally, this bound is shown to be tight by the explicit construction of maps γ_0^*, γ_1^* for which $J(\gamma_0^*(S), \gamma_1^*(X + W))$ equals the lower bound. The most important step here is obtaining the lower bound on the distortion. The only known approach for this is through the DPI.

B. Communication theoretic explanation and information theoretic bounds

We now explain the proof of Bansal and Başar by comparing problem B with a problem from communication theory. We use the notation of Fig 3. A source generates symbols (random variables) S taking values in a space \mathcal{S}, with probability $P_S(S)$. An encoder f maps these symbols to a space \mathcal{X}. Each symbol $X \in \mathcal{X}$ passes through a channel, which produces a symbol

![Fig. 3. Communication system with performance metrics](image-url)

symbols to a space \mathcal{Y}. Each symbol $Y \in \mathcal{Y}$ passes through a channel, which produces a symbol

\[P_{S|X} X \to Y \to \hat{S} \]

Each symbol $\hat{S} \in \mathcal{S}$ is transmitted to the destination.
$Y \in \mathcal{Y}$ with probability $P_{Y|X}(Y|X)$. A decoder g maps Y to a destination space \hat{S}. The system is endowed with two performance metrics: a distortion measure $\delta : \mathcal{S} \times \hat{S} \to [0, \infty)$ and a cost $\rho : \mathcal{X} \to [0, \infty)$.

Standard communication theory employs block codes wherein multiple symbols are coded together. An n-block encoder (resp., decoder) is a map $f : \mathcal{S}^n \to \mathcal{X}^n$ (resp., $g : \mathcal{Y}^n \to \hat{S}^n$). A single-letter code is a 1-block code. The subject of rate-distortion theory is the minimization of average distortion and average cost, over the class of codes of arbitrary block length. Only in certain exceptional cases does it turn out that the optimal code is a single-letter code. Instead of seeking such cases, one may ask the inverse question studied by Gastpar et al. [31]: when is a single-letter code Pareto optimal for average distortion and cost, over all codes of all block lengths?

For every single-letter code one can find a class of inverse optimal cost and distortion functions such that the code is optimal for them in the above sense. To characterize this class, Gastpar uses the communication-theoretic constructs of the rate-distortion function R and capacity-cost function C. For each $D \geq 0$, $R(D)$ is given by

$$R(D) = \min_{p(\hat{s}, s) : \mathbb{E}[\delta(S, \hat{S})] \leq D, p(s) = P_S(s)} I(S, \hat{S}).$$

(8)

where $I(S, \hat{S})$ is the mutual information between S and \hat{S}. For each $P \geq 0$, the capacity-cost function is

$$C(P) = \max_{p(x, y) : \mathbb{E}[\rho(X)] \leq P, p(y|x) = P_{Y|X}(y|x)} I(X, Y).$$

(9)

where $I(X, Y)$ is the mutual information between X and Y. If $D = \frac{1}{n} \sum_k \mathbb{E}[\delta(S_k, \hat{S}_k)]$ and $P = \frac{1}{n} \sum_k \mathbb{E}[\rho(X_k)]$ are the average distortion and cost incurred by an n-block code, then $R(D) \leq C(P)$. This follows from the DPI (4). Gastpar argues that, except in some degenerate cases, $R(D^*) = C(P^*)$, is equivalent to the Pareto optimality of average distortion and cost $D = D^*$, $P = P^*$. (cf. Lemma 1, [31]).

If $R(D^*) = C(P^*)$, the Pareto optimal single-letter code comprises of maps f, g such that $f(S) \sim p^*(x)$ and $g(Y)|S \sim p^*(\hat{s}|s)$ where $p^*(x)$ and $p^*(\hat{s}|s)$ achieve the optima in (9),(8), respectively. Note that the existence of such a single-letter code is not guaranteed by this argument. If one posits distributions $p^*(x)$ and $p^*(\hat{s}|s)$ induced by a single-letter code, inverse
(Pareto) optimal cost and distortion are given by [31, Lemma 3, 4]

\[\rho(x) = c_1 D(P_{Y|X}(.|x)||p_Y^*(\cdot)) + \rho_0 + \beta(x) \mathbb{1}_{\{p^*(x) > 0\}} \]

\[\delta(s, \hat{s}) = -c_2 \log p^*(s|\hat{s}) + d_0(s) \] \hspace{1cm} (10)

where \(c_1, c_2 > 0\), \(\rho_0 \in \mathbb{R}\), \(d_0 : \mathcal{S} \to \mathbb{R}\) is arbitrary, \(\beta : \mathcal{X} \to [0, \infty)\) and \(p_Y^*\) is the marginal of \(Y\) under the distribution \(p^*(x)P_{Y|X}(y|x)\). We recall that this characterization is also known from Csiszar and Körner [32].

1) Relation to the Bansal- Başar problem: The key distinction between the information-theoretic problem described above and the control problem \(N\) is that the latter assumes a fixed (effectively, unit) block length. Since the controllers \(\gamma_0, \gamma_1\) in problem \(N\) act on a single sample of their respective arguments, they are single-letter codes. One may consider an “information-theoretic” version of \(N\) in which the code allows infinite delay (i.e. arbitrary block lengths) and the objective is the average cost. The achievability results from rate-distortion theory when applied to this problem do not in general provide for the existence of a single-letter code (recall the discussion in [10] and [9]).

The cost in \(B\) is a sum of a distortion-like term \((u_1 - x_0)^2\), a cost-like term \(k_0u_0^2\) and a generalized cost term \(s_0u_0x_0\). Suppose \(s_0 = 0\). In this case problem \(B\) asks for a single-letter code that minimizes a sum of distortion and cost over the class of all single-letter codes. Clearly, if a single-letter code exists that is Pareto optimal in the sense of Gastpar, it is (upon appropriate scaling of cost functions) also optimal for \(B\). Problem \(B\) with \(s_0 = 0\) happens to be the exceptional case where such a code does exist. Indeed in (10) if \(f\) is taken to be the identity and \(\hat{S} = g(Y) = \frac{\sigma_d^2}{\sigma_d^2 + \sigma_w^2} Y\), we get \(\rho(x) = c_1 x^2 + \rho_0\) and \(\delta(s, \hat{s}) = c_2(s - \hat{s})^2 + d_0(s)\) [31], which matches the distortion and cost terms in \(B\).

With this understanding the appearance of the data processing inequality in the proof of Bansal and Başar can be explained as a vestige of the communication-theoretic problem that allows infinite delay and a stronger notion of optimality that seeks optimality of a single letter code over codes of arbitrary block lengths.

Importantly, if, to obtain inverse optimal cost functions for the control problem \(N\), one argues via Gastpar’s notion of inverse optimality, then the DPI is indispensable: a single-letter code is optimal in the sense of Gastpar if and only if it satisfies the characterizations in (10). The optimization approach we develop in the following sections is comparatively more flexible, and
includes in it as a special case, the bound/inverse optimality characterizations obtained above.

III. THE OPTIMISATION-BASED APPROACH

This section contains the main contributions of this paper. In Section III-A, we formulate the problem \mathbf{N} from Section I as a (nonconvex) optimization problem over joint distributions. In Section III-B we introduce its convex relaxation. In Section III-C, we solve problem \mathbf{B} via its convex relaxation.

A. Problem formulation

For the rest of the paper, we will consider the notation of Fig 3. Presently, we assume for simplicity that $\mathcal{S}, \mathcal{X}, \mathcal{Y}, \hat{\mathcal{S}}$ are finite. There are four random variables in the problem: S, X, Y, \hat{S}; let Q be their joint distribution. To be a distribution of S, X, Y, \hat{S}, Q must satisfy the following ‘constraints’.

1) Q must be a distribution.
2) Q must be consistent with the given marginals. i.e.

 $$Q_S(s) \equiv P_S(s), \quad \text{and} \quad Q_{Y|X}(y|x) \equiv P_{Y|X}(y|x).$$

3) Q must respect the information structure, i.e. Q must satisfy Markovianity:

 $$S \rightarrow X \rightarrow Y \rightarrow \hat{S}$$

Therefore, a ‘feasible’ distribution Q is one that can be expressed as

$$Q(s, x, y, \hat{s}) \equiv P_S(s)Q(x|s)P_{Y|X}(y|x)Q(\hat{s}|y). \quad \text{(11)}$$

We use \mathcal{Q} to denote the set of all such Q.

$$\mathcal{Q} := \{Q \mid Q \in \mathcal{P}(Z), \text{for which } \exists Q_{X|S} \in \mathcal{P}(\mathcal{X}|\mathcal{S}),$$

$$Q_{\hat{S}|Y} \in \mathcal{P}(\hat{\mathcal{S}}|\mathcal{Y}), \text{ such that } Q \text{ satisfies (11)}\}, \quad \text{(12)}$$

where $\mathcal{P}(\cdot)$ is the set of probability distributions on ‘\cdot’ and we denote $Z := \mathcal{S} \times \mathcal{X} \times \mathcal{Y} \times \hat{\mathcal{S}}$.

Any $Q \in \mathcal{Q}$ is parametrized by the kernels $Q_{X|S}$ and $Q_{\hat{S}|Y}$ (this parametrization has been studied in [33]). In the context of Fig 3, these kernels can be thought of as “random” (single-letter) encoder and decoder, respectively. They together constitute what we call a random code.
Definition 3.1: A random encoder is a conditional distribution \(Q_{X|S}\) on \(\mathcal{X}\) given a symbol in \(S\). A random decoder is a conditional distribution \(Q_{\hat{S}|Y}\) on \(\hat{S}\) given a symbol in \(Y\). A pair of a random encoder and decoder is a random code. An encoder (resp., decoder) is deterministic if and only if there is a function \(f\) (resp., \(g\)) such that \(Q_{X|S}(x|s) = \mathbb{I}_{\{f(s) = x\}}\) for all \(x, s\) (resp., \(Q_{\hat{S}|Y}(\hat{s}|y) = \mathbb{I}_{\{g(y) = \hat{s}\}}\) for all \(y, \hat{s}\)). A pair of deterministic encoder and decoder is a deterministic code.

The problem that minimizes cost \(\mathbb{E}[\kappa(S, X, Y, \hat{S})]\) over random codes is our optimization-based formulation for \(N\):

\[
\min_{Q \in \mathcal{Q}} \langle \kappa, Q \rangle, \tag{N}
\]

where \(\langle \cdot, \cdot \rangle\) denotes the operation \(\langle \kappa, Q \rangle := \sum_z \kappa(z)Q(z)\) and \(z\) is a short-hand for a tuple \((s, x, y, \hat{s}) \in \mathcal{Z}\). There is no abuse in denoting this problem as \(N\) since it has the same optimal value as \(N\) from Section I.

Lemma 3.1: The relaxed stochastic control problem over random codes (i.e. \(N\)) has a solution that is a deterministic code.

Proof: Write \(N\) as

\[
\min \sum_{s, x, y, \hat{s}} \kappa(s, x, y, \hat{s})P_S(s)Q_{X|S}(x|s)P_Y|X(y|x)Q_{\hat{S}|Y}(\hat{s}|y)
\]

s.t. \(Q_{X|S} \in \mathcal{P}(\mathcal{X}|\mathcal{S}), Q_{\hat{S}|Y} \in \mathcal{P}(\hat{\mathcal{S}}|\mathcal{Y})\)

\(N\) is thus a separably constrained bilinear optimization problem. It is a well known property of such a problem (see Exercise 4.25, [34]) that it has a solution that is an extreme point; in this case a deterministic code.

Without loss of generality we consider this \(N\) as our stochastic control problem.

Remark III.1. Bilinearity: Note that the bilinearity of the objective of \(N\) is a consequence of its information structure; it is not clear if this property will hold for joint distributions representing more exotic information structures.

B. Convex relaxation

We now formulate the convex relaxation of \(N\), first noting the nonconvexity of this problem.

Lemma 3.2: \(\mathcal{Q}\) is not a convex set.
Proof: Suppose Q is convex and consider distributions $Q^1, Q^2 \in Q$ such that $Q^1_{X|S} \neq Q^2_{X|S}$ and $Q^1_{S|Y} \neq Q^2_{S|Y}$. Such Q^1, Q^2 exist so long as \mathcal{X} and $\hat{\mathcal{S}}$ are not both singletons. Let $t \in (0, 1)$. Then $q := tQ^1 + (1 - t)Q^2$ belongs to Q and satisfies (11). Consequently, we must have $q(s|y) = q(s|x, y)$. Therefore using (11),

$$q(s|y) = Q^1(s|y) + \frac{(1 - t)Q^2(x|s)[Q^2(s|y) - Q^1(s|y)]}{tQ^1(x|s) + (1 - t)Q^2(x|s)},$$

for s, x, y such that $q(s, x, y) > 0$. The right hand side is independent of x, s for all \hat{s}, y if and only if one of the following is true: a) $Q^1(\hat{s}|y) \equiv Q^2(\hat{s}|y)$ or b) $\frac{(1-t)Q^2(x|s)}{tQ^1(x|s) + (1-t)Q^2(x|s)} = c$, a constant, for all x, s. The first possibility is ruled out by the choice of Q^1 and Q^2. The second possibility implies $t(Q^1(x|s) - Q^2(x|s)) \equiv 0$, which is ruled out since $t > 0$. Thus Q is not convex.

Remark III.2. In the classical information structure Q would admit the decomposition

$$Q(s, x, y, \hat{s}) = P_S(s)Q(x|s)P_{Y|X}(y|x)Q(\hat{s}|s, x, y),$$

instead of (11). It is easy to see that the set of such Q is convex. \qed

Thus, N is a nonconvex optimization problem with linear objective and nonconvex semialgebraic constraints. Furthermore, the convex hull of Q has no known characterization. A possible approach for finding a global solution is to solve a convex relaxation of N with the hope of finding a solution of the relaxation that is feasible for N.

We consider the following relaxation: we minimize $\langle \kappa, Q \rangle$ over all Q that satisfy the DPI and are consistent with the given source and channel distributions. This problem is denoted C_N:

$$\min_{Q \in Q_{\text{DPI}}} \langle \kappa, Q \rangle,$$

\hspace{1cm} (C_N)

where Q_{DPI} is the set:

$$Q_{\text{DPI}} = \{ Q \in \mathcal{P}(\mathcal{Z})| Q_S = P_S, Q_{Y|X} = P_{Y|X} \quad (13)$$

and $I(Q_{X,Y}) \geq I(Q_{S, \hat{S}})$, \hspace{1cm} (13)

and $I(\cdot)$ is the mutual information under distribution ‘’. Clearly, $Q \subset Q_{\text{DPI}}$ (since Markovianity implies the DPI (4), but is not equivalent to it) and Q_{DPI} is convex (this follows easily from the proof of Lemma 3.3 below).
To solve C_N, we write it as a mathematical program using additional variables $\{a(\hat{s}|s) : \hat{s} \in \hat{S}, s \in S\}, \{b(x) : x \in X\}$.

$$
\begin{align*}
C_N & \quad \min_{Q,a,b} \sum_{s,x,y,\hat{s}} \kappa(s, x, y, \hat{s}) Q(s, x, y, \hat{s}) \\
& \quad \quad \quad \sum_{x,y} Q(z) = a(\hat{s}|s) P_S(s), \quad \forall s, \hat{s}, \lambda^a(s, \hat{s}), \\
& \quad \quad \quad \sum_{s,y,\hat{s}} Q(z) = b(x), \quad \forall x, \lambda^b(x), \\
& \quad \quad \quad I(aP_S) \leq I(P_{Y|X} b), \quad \lambda, \\
& \quad \quad \quad \sum_{s,\hat{s}} Q(z) = P_{Y|X}(y|x) \sum_{s,y,\hat{s}} Q(z) \quad \forall x, y, \lambda^p(x, y), \\
& \quad \quad \quad \sum_s a(\hat{s}|s) = 1, \quad \forall s, \mu^a(s) P_S(s), \\
& \quad \quad \quad a(\hat{s}|s) \geq 0, \quad \forall s, \hat{s}, \nu^a(\hat{s}|s) P_S(s), \\
& \quad \quad \quad \sum_x b(x) = 1, \quad \mu^b, \\
& \quad \quad \quad b(x) \geq 0, \quad \forall x, \nu^b(x), \\
& \quad \quad \quad Q(z) \geq 0, \quad \forall z, \nu(z).
\end{align*}
$$

Here $I(aP_S)$ is the mutual information of S, \hat{S} under distribution $a(\hat{s}|s) P_S(s)$ (and likewise $I(P_{Y|X} b)$). $\lambda^a, \lambda^b, \lambda, \mu^a, \mu^b, \nu^a, \nu^b$ and ν are (scaled) Lagrange multipliers corresponding to the specific constraints. Assume the existence of an interior (or Slater) point [35]. Then (Q, a, b) solves C_N if and only if (Q, a, b) are feasible for C_N and there exist Lagrange multipliers that satisfy the following system of KKT conditions

$$
\begin{align*}
\lambda^a(s, \hat{s}) &= \lambda \log \frac{a(\hat{s}|s)}{a(\hat{s})} + \mu^a(s) - \nu^a(\hat{s}|s), \quad \text{(KKT}_{C_N}) \\
\lambda^b(x) &= -\lambda D(P_{Y|X}(\cdot|x)||b_Y(\cdot)) + \lambda + \mu^b - \nu^b(x), \\
\nu(z) &= \kappa(z) + \lambda^a(s, \hat{s}) + \lambda^b(x) + \lambda^p(x, y) \\
& \quad \quad - \sum_{\bar{y}} \lambda^p(x, \bar{y}) P_{Y|X}(y|x), \\
\lambda &\geq 0, \quad I(P_{Y|X} b) - I(aP_S) \geq 0, \quad \lambda(I(P_{Y|X} b) - I(aP_S)) = 0 \\
\langle a(\cdot|s), \nu^a(\cdot|s) \rangle &= 0, \quad \nu^a(\hat{s}|s) \geq 0, \quad a(\hat{s}|s) \geq 0, \\
\langle b, \nu^b \rangle &= 0, \quad \nu^b(\cdot) \geq 0, \quad b(\cdot) \geq 0, \\
Q(\cdot) &\geq 0, \quad \nu(\cdot), \langle \nu, Q \rangle = 0,
\end{align*}
$$

\forall z \in Z, where we have used, $\frac{\partial I(aP_S)}{\partial a(\hat{s}|s)} = P_S(s) \log \frac{a(\hat{s}|s)}{a(\hat{s})}$, $\frac{\partial I(P_{Y|X} b)}{\partial b(x)} = D(P_{Y|X}(\cdot|x)||b_Y(\cdot)) - 1$ and $b_Y(\cdot)$ denotes $\sum_x P_{Y|X}(y|x) b(x)$.
To solve N for optimality or inverse optimality by the logic of the convex relaxation, we have to tackle (KKT_{CN}). The hardness of this depends on structure of κ and the choice of the convexification, as we explain below.

Remark III.3. DPI and the structure of κ: Perhaps the most difficult part of (KKT_{CN}) is (\ast), which contains all variables involved and the left hand side ν has to be both nonnegative and complementary to Q. One way of dealing with this would be to set $\nu(\cdot) \equiv 0$. Then (\ast) necessitates that κ be of the form

$$k(s, x, y, \hat{s}) \equiv f_1(x) + f_2(s, \hat{s}) + f_3(x, y),$$

where the functions f_1, f_2, f_3 are determined by the Q that solves C_N. The communication setting, where $\kappa(z) \equiv \delta(s, \hat{s}) + \rho(x)$, agrees naturally with this structure and therefore taking $\nu(\cdot) \equiv 0$ may solve (KKT_{CN}). Furthermore, inverse optimality is easy for this structure (in fact, $\nu(\cdot) \equiv 0$ gives the same form of inverse optimal δ and ρ as (10)). Problem B, on the other hand, has $\kappa(z) \equiv \delta(s, \hat{s}) + \rho(x) + \tau(x, s)$ and does not agree directly with (14). In our solution of B, we will not take $\nu(\cdot) \equiv 0$. The Witsenhausen problem has $\kappa(z) \equiv \zeta(x, \hat{s}) + \tau(x, s)$ and it is even harder to reconcile with (14) (see Theorem 5.2). The mismatch between κ and (14) makes inverse optimality for these problems hard too.

The structure of the right hand side of (14) is due the DPI constraint. Other convexifications would yield other structures and may allow greater ease in solving (KKT_{CN}). What we have developed is thus a general framework of which the DPI-based convexification is a particular application.

In the following sections, we show that this view of the DPI as a convexification tool is sufficient for solving B. In Section III-C1 we solve a variant of B with $\kappa = \delta + \rho$. In Section III-C2 we solve B.

C. Solution of specific instances

1) **Solution with Gastpar-type cost functions:** In this section consider a special case of N, denoted G, where $\kappa(z) \equiv \delta(s, \hat{s}) + \rho(x)$:

$$\min_{Q \in Q} \langle \delta + \rho, Q \rangle, \quad \text{(G)} \quad \min_{Q \in Q_{\text{DPI}}} \langle \delta + \rho, Q \rangle. \quad \text{(C}_G\text{)}$$
and C_G is the convex relaxation of G. We first write C_G as a mathematical program in a simpler form than C_N. Notice that the variable ‘Q’ in C_N can be dropped since the objective of C_G can be expressed in terms of a, b alone, and for any (a,b) in the set $\{(a,b)|a \in P(\tilde{S}|S), b \in P(\mathcal{X}), I(aP_S) \leq I(P_{Y|X}b)\}$, there exists Q satisfying the constraints in C_N (take $Q(z) \equiv a(\tilde{s}|s)P_S(s)b(x)P_{Y|X}(y|x)$). An equivalent form of C_G is thus the following.

C_G	$\min_{a,b} \sum_{s,\tilde{s}} \delta(s, \tilde{s})a(\tilde{s}	s)P_S(s) + \sum_x \rho(x)b(x)$	
	$\sum_{\tilde{s}} a(\tilde{s}	s) = 1, \forall s, :\mu^a(s)P_S(s)$,	
	$\sum_x b(x) = 1, :\mu^b$,		
	s.t. $I(aP_S) \leq I(P_{Y	X}b), :\lambda$	
	$a(\tilde{s}	s) \geq 0, \forall s, \tilde{s} :\nu^a(\tilde{s}	s)P_S(s)$,
	$b(x) \geq 0, \forall x, :\nu^b(x)$		

Lemma 3.3: C_G is a convex optimization problem.

Proof: The objective is linear. All constraints except the third are linear. It is well known [30] that for fixed P_S, $I(aP_S)$ is convex in a and for fixed $P_{Y|X}$, $I(P_{Y|X}b)$ is concave in b, whereby the feasible region of C_G is convex.

Let $\mu^a, \mu^b, \lambda, \nu^a, \nu^b$ be the Lagrange multipliers of the constraints of problem C_G. a, b are optimal for C_G if and only if together with the Lagrange multipliers, they satisfy

\[
\delta(s, \tilde{s}) = -\lambda \log \frac{a(\tilde{s}|s)}{a(\tilde{s})} - \mu^a(s) + \nu^a(\tilde{s}|s) \]

(KKT$_{C_G}$)

\[
\rho(x) = \lambda D\left(P_{Y|X}(\cdot|x)||b_{Y}(\cdot)\right) - \lambda - \mu^b + \nu^b(x) \]

$\lambda \geq 0$, $I(P_{Y|X}b) - I(aP_S) \geq 0$, $\lambda(I(P_{Y|X}b) - I(aP_S)) = 0$

$\sum_{\tilde{s}} a(\tilde{s}|s) = 1$, $\langle a(\cdot|s), \nu^a(\cdot|s) \rangle = 0$, $\nu^a(\tilde{s}|s) \geq 0$

$\sum_x b(x) = 1$, $\langle b, \nu^b \rangle = 0$, $\nu^b(\cdot) \geq 0$, $b(\cdot) \geq 0$, $a(\tilde{s}|s) \geq 0$

$\forall z \in Z$. By making this simplification, we have effectively taken $\nu(\cdot) \equiv 0$, $\lambda^p(\cdot) \equiv 0$ in (KKT$_{C_N}$) and in (*) we are separately setting terms in (s, \tilde{s}) and x to be zero.

Remark III.4. Alternatives to Lagrange multipliers: We note here that variational equations for the rate-distortion function were derived without invoking Lagrange multipliers for abstract alphabets by Csiszár [36]. We can derive our conditions through these results when the cost is
of the type in C_G. In this case, we may as above consider the problem

$$\min_{P_a \in L_a, P_b \in L_b} g_1(P_a) + g_2(P_b) \quad \text{s.t.} \quad I(P_a) \leq I(P_b)$$

(15)

where P_a and P_b are joint distributions on (s, \hat{s}) and (x, y) respectively and L_a and L_b are sets enforcing P_S to be fixed and $P_{Y|X}$ to be fixed and P_a, P_b to be joint distributions; finally $g_1(P_a) = \mathbb{E} [\delta(S, \hat{S})]$ and $g_2(P_b) = \mathbb{E} [\rho(X)]$. In this formulation, infinite constraints are left in abstract form and Lagrange multipliers are invoked for the scalar constraint.

Now assuming the minimum is attained, there exists a $\lambda \geq 0$ such that the following problem has the same optimal solution as (15):

$$\min_{P_a \in L_a, P_b \in L_b} g_1(P_a) + g_2(P_b) + \lambda (I(P_a) - I(P_b))$$

(16)

Assume that $\lambda > 0$ and define $\eta = \frac{1}{\lambda}$. Problem (16) is separable, and is equivalent to solving

$$\min_{P_a \in L_a} I(P_a) + \eta g_1(P_a)$$

(17)

and

$$\max_{P_b \in L_b} I(P_b) - \eta g_2(P_b)$$

(18)

The variational equations for solving (17) are given by [36, Lemma 1.4 and equation 1.21]:

$$\log \frac{dP_{S|S=s}}{dP_S}(\hat{s}) = \log \alpha(s) - \eta \delta(s, \hat{s})$$

(19)

where $\alpha(\cdot) \geq 1$ satisfies $\int_s \alpha(s) e^{-\eta \rho(s, \hat{s})} P_S(ds) = 1, \forall \hat{s}$. Likewise for (18), the variational equations are given by [37],

$$D \left(P_{Y|X=x} \| P_Y \right) = sp(x) + \chi(x) \mathbb{I}_{\{P_X(x) = 0\}} = V,$$

(20)

where $\chi(\cdot) \geq 0$ and V is a scalar. When the cost is not “separable” in this sense there are, to the best of our knowledge, no known results that can be leveraged. The structure of the cost is a recurring theme in this paper (cf. Remark III.3) and points to the need for a development of a theory similar to that of [36] for more general costs. Further discussion on these conditions is contained in Remark IV.8.

We are now prepared to demonstrate our goal which was to find a solution of C_G that is feasible for G, in order to arrive at a solution to G. Although we have taken Z to be finite, we assume that (KKT$_{C_G}$) holds for this problem too. The arguments used are essentially geometric and infinite constraints can approached as in Luenberger [35].

Below we abbreviate $\xi_0(\gamma_0) := \frac{\sigma_0^2 \sigma_x^2}{(\gamma_0 + \sigma_x^2 + \sigma_w^2)^2}$, $\xi_1(\gamma_0) := \frac{\gamma_0 \sigma_0^2}{\gamma_0^2 \sigma_0^2 + \sigma_w^2}$ and $\bar{P}(\gamma_0) := \frac{\gamma_0 \sigma_0^2 + \sigma_w^2}{\gamma_0 \sigma_0^2}$.
Theorem 3.1: Consider problem \(\mathbf{B} \) with \(s_{01} = 0 \), i.e., consider \(G \) where \(S \sim \mathcal{N}(0, \sigma_0^2) \), \(Y = X + W, W \sim \mathcal{N}(0, \sigma_w^2) \) and independent of \(S, \delta(s, \tilde{s}) \equiv (\tilde{s} - s)^2 \) and \(\rho(x) \equiv k_0 x^2 \). Assume that a solution of \(C_G \) is characterized by the KKT conditions (KKT\(_{C_G}\)). Then the PDF given by \((S, \gamma_0^* S, Y, \gamma_1^* Y) \) where \(\gamma_0^* \) satisfies \(k_0 = \xi_0(\gamma_0^*) \) and \(\gamma_1^* = \xi_1(\gamma_0^*) \) solves the convex relaxation \(C_G \). Furthermore, it is a solution of \(G \).

Proof: We parametrize \(X = \gamma_0 S \) and \(\tilde{S} = \gamma_1 Y \) and find \(\gamma_0 \) and \(\gamma_1 \) to solve (KKT\(_{C_G}\)). The distribution obtained would be feasible for \(G \) since \(S \rightarrow \gamma_0 S \rightarrow Y \rightarrow \gamma_1 Y \), and would thus be a solution of \(G \). With these constants we get (details can be found in [38], p. 51)

\[
D(P_{Y|X}(\cdot|x)) = c_1 + \frac{x^2}{2\gamma_0^2 \sigma_0^2 P}
\]

(21)

\[
\log \frac{a(\tilde{s}|s)}{a(\tilde{S})} = \frac{-1}{2\gamma_1^2 \sigma_w^2 P} [\tilde{s} - \bar{P} \gamma_0 \gamma_1 s]^2 + c_2(s)
\]

(22)

where \(P = P(\gamma_0), c_1 \) independent of \(x \) and \(c_2 \) is independent of \(\tilde{s} \). To solve system (KKT\(_{C_G}\)), take \(\nu^b(x), \nu^a(\tilde{s}|s) \equiv 0, \mu^b = \lambda c_1 - \lambda \) and \(\mu^a(s) \equiv -\lambda c_2(s) \). The first two equations in (KKT\(_{C_G}\)) reduce to the identities

\[
k_0 x^2 \equiv \frac{x^2}{2\gamma_0^2 \sigma_0^2 P}, \quad (\tilde{s} - s)^2 \equiv \frac{\lambda}{2\gamma_1^2 \sigma_w^2 P} [\tilde{s} - \bar{P} \gamma_0 \gamma_1 s]^2.
\]

Comparing coefficients, we get \(k_0 = \xi_0(\gamma_0^*), \gamma_0 \gamma_1 \bar{P} = 1 \) and \(\lambda = 2\gamma_1^2 \sigma_w^2 \bar{P} \). Simplifying, we get \(\gamma_0 = \gamma_0^* \), where \(\gamma_0^* \) satisfies \(k_0 = \xi_0(\gamma_0^*) \) and \(\gamma_1 = \gamma_1^* = \xi_1(\gamma_0^*) \). To show that this solves (KKT\(_{C_G}\)), we need to show complementarity slackness of the DPI constraint. The values \(\gamma_0^* \) and \(\gamma_1^* \) imply \(\lambda > 0 \). Therefore we need to show that equality holds in the DPI. This follows by noting that \(E[X^2] = \gamma_0^* \sigma_0^2 \) and \(E[(\tilde{S} - S)^2] = \frac{\sigma_0^2 \sigma_w^2}{\gamma_0 \gamma_1^* \sigma_0^2 + \sigma_w^2} \), which means that the inequalities \((5)-(6)\) are tight with \(P \) taken as \(\gamma_0^* \sigma_0^2 \). Thus, the distributions induced by taking \(X = \gamma_0^* S \) and \(\tilde{S} = \gamma_1^* Y \) solve (KKT\(_{C_G}\)) and are optimal for \(C_G \). Since they satisfy Markovianity, they also solve \(G \).

Remark III.5. Gaussian test channel: That these calculations look familiar and that the gains \(\gamma_0^* \) and \(\gamma_1^* \) are the well-known codes for the Gaussian test channel is not surprising; when the objective is a function of \(a, b \) alone, (KKT\(_{C_N}\)) reduces to (KKT\(_{C_G}\)), the right hand side of which has the same form as Gastpar’s (10). But recall that our calculations do not pertain to a communication problem. They are for the solution of a convex relaxation of a nonconvex *optimization* problem which was convexified using the DPI. □
γ^*_0 and γ^*_1 agree with the solution of Bansal and Başar for $s_{01} = 0$. But the important consequence, which is part of the message of this paper, is that, problem B (with $s_{01} = 0$) shares its solution with a specific convex relaxation. We emphasize this through Theorem 3.2 below.

Theorem 3.2: Let the setting and the assumptions of Theorem 3.1 hold. The optimal value of problem B with $s_{01} = 0$ equals the optimal value of its convex relaxation with Q_{DPI}. Furthermore, any solution of B with $s_{01} = 0$ solves its convex relaxation with Q_{DPI}.

2) **Solution of the Bansal-Başar problem:** We now return to problem B. B has the following structure:

$$\kappa(z) \equiv \delta(s, \hat{s}) + \rho(x) + \tau(x, s)$$

where $\tau(x, s) \equiv k\sqrt{\rho(x)\tau'(s)}$. We provide two proofs for the solution of B. The first proof uses a reasoning similar to that used by Bansal and Başar — specifically, the use of the Cauchy-Swartz inequality for bounding the term $\tau(x, s)$. In our second proof (which is our new proof), we do not use this inequality and argue directly.

Let C_B be the convex relaxation of problem B.

$$\min_{Q \in Q} \langle \delta + \rho + \tau, Q \rangle \quad (B) \quad \min_{Q \in Q_{DPI}} \langle \delta + \rho + \tau, Q \rangle \quad (C_B)$$

By Cauchy-Schwartz inequality, we get $k \sum_{x,s} \sqrt{\rho(x)\tau'(s)}P_S(s)Q(x|s) \geq -\alpha(\sum_x \rho(x)b(x))^{1/2}$,

where $\alpha = |k|\sqrt{\sum_s (\tau'(s))^2 P_S(s)}$. The use of the Cauchy-Swartz inequality allows for the construction of an auxiliary problem, denoted B', where $\langle \tau, Q \rangle$ is replaced with $-\alpha \sqrt{\langle \rho, Q \rangle}$

$$\min_{Q \in Q} \langle \delta + \rho, Q \rangle - \alpha \sqrt{\langle \rho, Q \rangle} \quad (B')$$

The convex relaxation of B' using Q_{DPI} is the following,

$$\min_{Q \in Q_{DPI}} \langle \delta + \rho, Q \rangle - \alpha \sqrt{\langle \rho, Q \rangle} \quad (C_{B'})$$

We will use $C_{B'}$ to solve B. Note that $C_{B'}$ is not a special case of C_N because its objective is not linear in Q. But it can be written as a mathematical program, as C_G was, in terms of the variables a, b. The resulting formulation of $C_{B'}$ has the same constraints as C_G and its objective is

$$\sum_{s, \hat{s}} \delta(s, \hat{s})P_S(s)a(\hat{s}|s) + \sum_x \rho(x)b(x) - \alpha(\sum_x \rho(x)b(x))^{1/2}.$$

Lemma 3.4: $C_{B'}$ is a convex optimization problem.
Proof: It suffices to show \(\psi(b) := -\sqrt{\sum_x \rho(x)b(x)} \) is a convex function of \(b \) (cf. Lemma 3.3). The Hessian of \(\psi, \nabla^2 \psi(b) = \frac{1}{4} \frac{1}{(\sum_x \rho(x)b(x))^{3/2}} \rho \tilde{\rho}^T \), where \(\tilde{\rho} := (\rho(x))_{x \in \mathcal{X}} \) is the vector of values of \(\rho \). Clearly, \(\nabla^2 \psi(b) \geq 0 \) for all \(b \).

Consequently, the KKT conditions of \(C_B \) characterize its solution. We will use this to solve \(B \).

Theorem 3.3: Consider the problem of Bansal and Başar, i.e., consider problem \(B \) where \(S \sim \mathcal{N}(0, \sigma_0^2), Y = X + W \) where \(W \sim \mathcal{N}(0, \sigma_w^2) \) and independent of \(S, \delta(s, \tilde{s}) \equiv (\tilde{s} - s)^2, \rho(x) \equiv k_0x^2 \) and \(\tau(x, s) \equiv s_0x. \) Suppose the solution of \(C_{B'} \) is characterized by its KKT conditions. Then the PDF \((S, \gamma_0^*S, Y, \gamma_1^*Y) \) where \(\gamma_1^* = \xi_1(\gamma_0^*) \) and \(\gamma_0^* \) is a positive solution of

\[
(2k_0\gamma_0^*\sigma_0 - |s_0|\sigma_0)(\gamma_1^*\sigma_0^2 + \sigma_w^2)^2 = 2\gamma_0^*\sigma_0^3\sigma_w^2,
\]

solves \(B' \) and its convex relaxation \(C_{B'} \). Furthermore, the PDF \((S, \gamma_0^*S, Y, \gamma_1^*Y) \) where \(\gamma_1^* = \xi_1(\gamma_0^*) \) and \(\gamma_0^* = -\text{sgn}(s_0)\gamma_0^* \) solves \(B \).

Proof: By Cauchy-Schwartz inequality and since \(Q \subset Q_{\text{DPI}} \) we have

\[
\text{OPT}(B) \geq \text{OPT}(B') \geq \text{OPT}(C_{B'}).
\]

We first show that the second inequality is tight by finding a solution of \(C_{B'} \) that is feasible for \(B' \). Then we will construct a feasible point of \(B \) for which the objective of \(B \) equals \(\text{OPT}(B') \).

The KKT conditions of \(C_{B'} \) are similar to those of \(C_G \), except for the equation

\[
\rho(x)(1 - \alpha/(2R)) = \lambda \mathcal{D}(P_X|X(\cdot)|b_Y(\cdot)) - \lambda - \mu^b + \nu^b(x),
\]

where \(R := \sqrt{\sum_t \rho(t)b(t)} \). Here, \(\alpha = \frac{|s_0|\sigma_0}{\sqrt{k_0}} \). We postulate that \(X = \gamma_0S, \hat{S} = \gamma_1Y \) to solve the KKT conditions of \(C_{B'} \). Assume \(\gamma_0 > 0 \), so \(R = \sqrt{k_0\gamma_0\sigma_0} \). As in Theorem 3.1, put \(\nu^b(x), \nu^a(\tilde{s}) = 0, \mu^b = \lambda c_1 - \lambda, \mu^a(s) = -\lambda c_2(s) \) and compare coefficients to get

\[
k_0 = \frac{\lambda}{2(1 - \frac{\lambda}{2})}, \gamma_0\gamma_1\tilde{P} = 1 \text{ and } \lambda = 2\gamma_1^2\sigma_w^2\tilde{P}.
\]

Simplifying gives \(\gamma_0 = \gamma_0^* \), where \(\gamma_0^* \) satisfies (23) and \(\gamma_1 = \gamma_1^* = \xi_1(\gamma_0^*) \). The equality in DPI follows as in Theorem 3.1. Therefore, the distribution \((S, \gamma_0^*S, Y, \gamma_1^*Y) \) is optimal for \(C_{B'} \) and, by Markovianity, for \(B' \). Thus we get that

\[
\text{OPT}(B') = \frac{\sigma_w^2\sigma_0^2}{\gamma_0^2\sigma_0^2 + \sigma_w^2} + k_0\gamma_0^2\sigma_0^2 - |s_0|\sigma_0^2
\]

Now consider the PDF \(Q^* \) defined by \((S, \gamma_0^*S, Y, \gamma_1^*Y) \), where \(\gamma_0^* \in \mathbb{R} \) and \(\gamma_1^* = \xi_1(\gamma_0^*) \). It is easy to check if \(\gamma_0^* = -\text{sgn}(s_0)\gamma_0^* \), the objective of \(B \) evaluated at \(Q^* \) equals \(\text{OPT}(B') \). Thus \(Q^* \) solves \(B \).
Note that (23) agrees with (7) of Bansal and Başar with $P^* = \gamma^*_0\sigma_0$ and the γ^{**}_0 agrees with the optimal controller they obtain in [2]. Although the above result did not utilize the convex relaxation of B, it is indeed true that a solution of B also solves its convex relaxation with Q_{DPI}. Below we emphasize this.

Theorem 3.4: Let the setting and assumptions of Theorem 3.3 hold. Any solution of B solves its relaxation C_B with Q_{DPI}, i.e. the optimal value of B equals the optimal value of C_B. In fact, $\text{OPT}(B) = \text{OPT}(B') = \text{OPT}(C_B) = \text{OPT}(C_B')$.

Proof: We only need to prove the last sequence of equalities. Since $Q \subset Q_{\text{DPI}}$, $\text{OPT}(B) \geq \text{OPT}(C_B)$ and by Cauchy-Schwartz inequality, $\text{OPT}(C_B) \geq \text{OPT}(C_B')$. But Theorem 3.3 shows $\text{OPT}(B) = \text{OPT}(C_B')$. Combining this gives the result.

We now show that as a consequence of Theorem 3.4, any solution of B must satisfy equality in the DPI. For this we need the following lemma.

Lemma 3.5: Let the setting and assumptions of Theorem 3.3 hold and let Q^* be a solution of B. Then Q^* also solves
\[
\min_{Q \in Q_{\text{DPI}}} \langle \delta + (1 - \alpha/(2R^*))\rho, Q \rangle \quad (C_{G'})
\]

where $R^* = \sqrt{\langle \rho, Q^* \rangle}$.

Proof: From Theorem 3.4, Q^* solves $C_{B'}$. The proof now follows easily by comparison of the KKT conditions of $C_{B'}$ and $C_{G'}$.

Theorem 3.5: Let the setting and assumptions of Theorem 3.3 hold and let Q^* be a solution of B. Define the rate-distortion function $R(\cdot)$ and capacity cost function $C(\cdot)$ as in (8)-(9) for distortion δ and cost $(1 - \alpha/(2R^*))\rho$, where $R^* = \sqrt{\langle \rho, Q^* \rangle}$. Suppose for each $P \geq 0$ there exists $D \geq 0$ such that $C(P) = R(D)$. Then the equality holds in the DPI under the distribution Q^*.

Proof: By Lemma 3.5, Q^* solves $C_{G'}$. Let $a = Q^*_{\hat{S}|S}, b = Q^*_X$ and for sake of contradiction, suppose $I(aP_S) < I(P_{Y|X}b)$. Clearly, for $D = \mathbb{E}_a[\delta]$ and $P = \mathbb{E}_b[(1 - \alpha/(2R^*))\rho]$, $R(D) \leq I(aP_S) < I(P_{Y|X}b) \leq C(P)$. By the hypothesis, there exists D' with $R(D') = C(P) > 0$ and since $R(\cdot)$ is a strictly decreasing when it is positive, $D' < D$. Let a' be a distribution on $\hat{S}|S$ such that $D' = \mathbb{E}_{a'}[\delta]$. Then $Q'(z) \equiv P_{S}(s)a'(\hat{s}|s)P_{Y|X}(y|x)b(x)$ is feasible for $C_{G'}$ and has a lower value than Q^*. A contradiction.

Remark III.6. DPI in problem B: It is an open problem to know if there a way of solving B
that does not use the DPI [4]. The above theorem says that, except in a degenerate case, equality in the DPI is necessary for optimality of B. Thus any other solution method must imply this equality. Note that this is true even for solutions of B that are not ‘linear’ (where $X = \gamma_0S$, $\hat{S} = \gamma_1Y$) or deterministic.

The original proof of Bansal and Başar used Cauchy-Schwartz inequality (cf. Section II-A). We used this inequality in the construction of the auxiliary problem B'. We now present an alternative proof by directly solving the convex relaxation C_B. But unlike C_B' or C_G, the objective of C_B cannot written in terms of a, b alone and we have to deal with the harder system (KKT$_C$).

Proof of Theorem 3.3 (without Cauchy-Schwartz): We will solve (KKT$_{C_N}$) for C_B. Let $X \sim \gamma_0S$, $\hat{S} \sim \gamma_1Y$ and Q be the resulting PDF. In (KKT$_{C_N}$), use (21)-(22), and put $\gamma_1 = \xi_1(\gamma_0)$, $\lambda = 2\gamma_1^2\sigma^2 \hat{P}$, $\mu^b = \lambda c_1 - \lambda$, $\nu^a(\cdot)$, $\nu^b(\cdot)$, $\lambda^p(\cdot) \equiv 0$, and $\mu^a(s) \equiv -\lambda c_2(s) + \bar{\mu}^a(s)$, where $\bar{\mu}^a(s)$ will be determined later. This reduces (*) to

$$\nu(z) \equiv k_0 x^2 - \xi x^2 + s_{01} x s + \bar{\mu}^a(s),$$

where $\xi := \xi_0(\gamma_0)$. If $s_{01} = 0$, setting $k_0 = \xi$ and $\bar{\mu}^a(\cdot) \equiv 0$ solves the problem. So we assume $s_{01} \neq 0$. We limit our choice of γ_0 to those which satisfy $k_0 > \xi_0(\gamma_0)$ and first find $\bar{\mu}^a(s)$ so as to satisfy $\nu(\cdot) \geq 0$. Completing the squares gives

$$\nu(z) \equiv \left(\sqrt{k_0 - \xi} x + \frac{s_{01}}{2\sqrt{k_0 - \xi}} s\right)^2 - \frac{s_{01}^2 s^2}{4(k_0 - \xi)} + \bar{\mu}^a(s).$$

Put $\bar{\mu}^a(s) \equiv \frac{s_{01}^2 s^2}{4(k_0 - \xi)}$, so that now $\nu(\cdot) \geq 0$. The complementarity slackness of the DPI constraint follows as before. So we only need to satisfy the complementarity of $\nu(\cdot)$ and $Q(\cdot)$. Observe that $\nu(z) > 0$ if and only if $x \neq -\frac{s_{01}}{2(k_0 - \xi)}$, whereas for $x \neq \gamma_0 s$, the PDF $Q(z) = 0$. Thus, it suffices to take $\gamma_0 = -\frac{s_{01}}{2(k_0 - \xi)}$ to satisfy the complementarity of $\nu(\cdot)$ and $Q(\cdot)$. Therefore taking $\gamma_0 = \gamma_0^* = -\text{sgn}(s_{01}) \gamma_0^*$, where γ_0^* is a positive solution of (23), satisfies $\gamma_0 = -\frac{s_{01}}{2(k_0 - \xi)}$. The positivity of γ_0^* ensures that $k_0 > \xi$ since $s_{01} \neq 0$. This completes the proof.

Remark III.7. Separability of the cost: Although the objective of B cannot be written in a, b alone, using Cauchy-Schwartz inequality, a problem B' with $\text{OPT}(B') = \text{OPT}(B)$, and whose objective could be written in a, b was constructed. For a problem with this structure, results from communication theory apply more directly (due to the structure of the DPI) and Bansal and Başar were able to leverage them. The optimization approach, on the other hand, can address
B more directly and through a more general framework, without the need for Cauchy-Schwartz inequality.

In summary we have shown that B can be solved by a particular application of the broader concept of convex relaxation where the DPI was used for constructing the convex relaxation.

IV. INVERSE OPTIMAL CONTROL

We now consider inverse optimal control and show how it may be addressed from the standpoint of convex relaxation. The specific problem we are interested in is problem G, where \(\kappa(z) \equiv \delta(s, \hat{s}) + \rho(x) \), although the overall framework applies to any case of N.

The thrust of this section is in showing that convex relaxations allow one to obtain a wider range of inverse optimal cost functions for G than are obtainable through the communication theoretic argument. To explain this, consider the convex relaxation \(C_G \) of G and recall the system \((KKT_{C_G}) \). We first clarify the distinction between inverse optimality for G and that for Gastpar’s problem which is characterized by (10).

Remark IV.8. Inverse optimal control: Suppose we are interested in inverse optimality of \(\delta \) and \(\rho \) for problem G. Nonconvexity of \(Q \) makes this hard, but the normal cone of \(Q_{DPI} \) provides a subset of the inverse optimal functions (cf. Section I-B). The right-hand side of the system \((KKT_{C_G}) \) is precisely this subset. Although the form of \(\delta \) and \(\rho \) in \((KKT_{C_G}) \) are the same as Gastpar’s in (10) (except for minor differences), ours are obtained for an altogether different notion of optimality. Gastpar has inverse optimality over deterministic codes of arbitrary block length; ours are for inverse optimality over \(Q \), i.e., over single-letter random codes. For inverse optimality for G, \((KKT_{C_G}) \) is not a necessary condition (unlike for optimality over arbitrary block lengths where (10) is also necessary). They have coincided because mutual information serves the dual role of characterizing Gastpar’s optimality and of convexifying \(Q \). The results of the previous sections demonstrate that for solving B or G, only the latter role is important.

There are minor differences between \((KKT_{C_G}) \) and (10). In (10) the constants \(c_1, c_2 \) are allowed to be distinct, but in \((KKT_{C_G}) \) they are equal (\(= \lambda \)). This is because Gastpar considers Pareto optimality; a Pareto optimal code minimizes \(\delta + \alpha \rho \) for some \(\alpha > 0 \). We have fixed \(\alpha = 1 \). Gastpar requires \(c_1, c_2 > 0 \), whereas our \(\lambda \) may be zero. Gastpar has an additional condition that \(R(D^*) \) and \(C(P^*) \) cannot be held fixed while reducing the optimal \(D^* \) and \(P^* \). This is equivalent, in our problem, to the sensitivity of the DPI constraint, which implies the strict positivity of \(\lambda \).
Equality in the DPI (analogous to $R(D^*) = C(P^*)$) is a necessary condition for optimality in C_G too (this follows from the proof of Theorem 3.5). Finally, Gastpar does not have a term corresponding to $\nu^a(\hat{s}|s)$; he has deliberately dropped it [38] since when $\nu^a(\hat{s}|s) > 0$, $\log \frac{a(\hat{s}|s)}{a(s)}$ is undefined.

We have chosen to focus on problem G because for this problem the inverse optimal cost functions can be read off directly from the KKT conditions. In general for problem N, one would have to obtain the cost functions by solving the system (KKT$_C$). The difficulty of doing this was articulated in Remark III.3.

The main implication of Remark IV.8 is as follows. The convexification using Q_{DPI} is only one convexification of Q that provided a specific subset of the inverse optimal cost functions of G, namely the one that coincided with Gastpar’s inverse optimal cost functions. One could potentially employ other convexifications and these would yield other subsets of inverse optimal cost functions of G. In the following section we will employ a convexification using a generalization of mutual information via f-divergence to obtain a larger class of inverse optimal cost functions for G.

A. Inverse optimal control using f-divergence

Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function such that $f(1) = 0$. The f-divergence of a pair of distributions P, Q supported on the same finite set is given by $D_f(P||Q) = \sum_x Q(x)f\left(\frac{P(x)}{Q(x)}\right)$. The corresponding f-mutual information between random variables X,Y, first studied by Ziv and Zakai [39], is defined as:

$$I_f(X;Y) = \sum_{x,y} p(x,y) f\left(\frac{p(x)p(y)}{p(x,y)}\right) = D_f(p_X(\cdot)p_Y(\cdot)||p(\cdot,\cdot)),$$

(24)

where $p(\cdot,\cdot)$ is the joint distribution of the random variables X,Y and $p(x)$ (and p_X), $p(y)$ (and p_Y) are marginals of X and Y. The K-L divergence is given by $D(P||Q) = \sum_x P(x) \log \frac{P(x)}{Q(x)} = D_{\log}(Q||P)$, and therefore, mutual information is $I(X;Y) = I_{\log}(X;Y)$.

f-divergence enjoys many of the properties of K-L divergence (see, e.g., [40]). In particular, the f-mutual information satisfies the data processing inequality [39] (for clarity, we call this the f-DPI).

Lemma 4.1: Suppose X,Y,Z are discrete random variables such that $X \to Y \to Z$. Then, $I_f(X;Y) \geq I_f(X;Z)$.

Similarly if $X \rightarrow Y \rightarrow Z$, $I_f(Y; Z) \geq I_f(X; Z)$ and if $W \rightarrow X \rightarrow Y \rightarrow Z$, then $I_f(X; Y) \geq I_f(W; Z)$. Just like the K-L divergence, $D_f(P||Q)$ is convex in (P, Q) [40]. From this, we get the convexity of $I_f(X; Y)$ in the kernel $p(y|x)$ for a fixed distribution $p(x)$ of X.

Lemma 4.2: Let $p(x, y)$ denote the joint distribution of random variables X, Y and $p(x)$ denote the marginal of X. For fixed $p(x)$, $I_f(X; Y)$ is a convex function of $p(y|x)$.

The convexity of the set Q_{DPI} is due to the fact that the mutual information $I(X; Y)$ is convex in $p(y|x)$ for fixed $p(x)$ and it is concave in $p(x)$ for fixed $p(y|x)$. The former property is shared by f-mutual information. For mutual information, the latter property is enabled by the additive decomposition of mutual information $I(X; Y) = H(Y) - H(Y|X)$. The additivity does not, in general, hold for f-mutual information and therefore it is not immediately clear if $I_f(X; Y)$ is concave in $p(x)$ for given $p(y|x)$. In this section, we will restrict ourselves to those convex functions f for which f-mutual information has this property.

Definition 4.1: A function $f : \mathbb{R} \rightarrow \mathbb{R}$ is said to have the saddle property if f is convex, $f(1) = 0$ and if the f-mutual information $I_f(X; Y)$ is a concave function of $p(x)$ for any fixed $p(y|x)$.

Remark IV.9. $f(x) \equiv -\log(x)$ has the saddle property, so the set of such functions is not empty. Furthermore, this is not a vacuous definition: $f(x) \equiv c - dx$ for constants c, d also has the saddle property.

Define the set

$$Q_{f-DPI} = \{Q \in \mathcal{P}(\mathcal{Z}) | Q_S = P_S, Q_Y|X = P_Y|X, \quad I_f(Q_{S|S}) \leq I_f(Q_{X,Y})\}$$

(25)

By Lemma 4.1, $Q \subset Q_{f-DPI}$. Furthermore, we have the following lemma.

Lemma 4.3: Let f have the saddle property. Then Q_{f-DPI} is convex.

Proof: Follows as in Lemma 3.3. □

Consider the following relaxation of N, denoted $f-C_N$.

$$\min_{Q \in Q_{f-DPI}} \langle \kappa, Q \rangle.$$

It follows that if f has the saddle property the relaxation $f-C_N$ is a convex optimization problem. $f-C_N$ can be written explicitly as a mathematical program in the variable $Q \in Q_{f-DPI}$ and additional variables $a = Q_{S|S}, b = Q_X$, in the same way as C_N was written.
Now consider problem G, i.e. take $\kappa(z) = \delta(s, \tilde{s}) + \rho(x)$. Then following the same line of arguments made for C_G, the objective of the relaxation $f-C_G$ can be written in terms of a, b alone and Q can be eliminated. The problem $f-C_G$ is the same as C_G, except that the constraint \(I(aP_S) \leq I(P_{Y|X}b) \) is replaced by \(I_f(aP_S) \leq I_f(P_{Y|X}b) \). Let $\mu^a, \mu^b, \lambda, \nu^a, \nu^b$ be the Lagrange multipliers of the constraints of problem $f-C_G$. a, b are optimal for $f-C_G$ if and only if together with the Lagrange multipliers, they satisfy, $\forall z \in \mathcal{Z}$,

\[
\delta(s, \tilde{s}) P_S(s) = -\lambda \frac{\partial I_f(aP_S)}{\partial a(s|s)} + P_S(s) \mu^a(s) + P_S(s) \nu^b(\tilde{s}|s) \tag{KKT_{f-C_G}}
\]

\[
\rho(x) = \lambda \frac{\partial I_f(P_{Y|X}b)}{\partial b(x)} + \mu^b + \nu^b(x)
\]

\[
\lambda \geq 0, \ I(P_{Y|X}b) - I(aP_S) \geq 0, \ \lambda(I_f(P_{Y|X}b) - I_f(aP_S)) = 0
\]

\[
\sum_s a(\tilde{s}|s) = 1, \langle a(\cdot|s), \nu^a(\cdot|s) \rangle = 0, \nu^a(\tilde{s}|s) \geq 0,
\]

\[
\sum_x b(x) = 1, \langle b, \nu^b \rangle = 0, \nu^b(\cdot) \geq 0, b(\cdot) \geq 0, a(\tilde{s}|s) \geq 0.
\]

Theorem 4.1: Let $Q \in \mathcal{Q}$ be a candidate solution of G. Denote $a(\tilde{s}|s) = Q_{\tilde{s}|s}(\tilde{s}|s), b(x) = Q_X(x)$. Then for this Q, the following functions δ, ρ are inverse optimal for problem G:

\[
\delta(s, \tilde{s}) = -\frac{1}{P_S(s)} \lambda \frac{\partial I_f(aP_S)}{\partial a(s|s)} + \mu^a(s) + \nu^a(\tilde{s}|s)
\]

\[
\rho(x) = \lambda \frac{\partial I_f(P_{Y|X}b)}{\partial b(x)} + \mu^b + \nu^b(x)
\]

where f is any continuously differentiable function having the saddle property, $\lambda \geq 0$ is a scalar satisfying $\lambda(I_f(P_{Y|X}b) - I_f(aP_S)) = 0$ and the other parameters are constants or functions satisfying, $\mu^b \in \mathbb{R}, \nu^b : \mathcal{X} \to [0, \infty), \mu^a : \mathcal{S} \to \mathbb{R}, \nu^a : \mathcal{S} \times \hat{\mathcal{S}} \to [0, \infty), \langle \nu^b, b \rangle = 0, \langle \nu^a(\cdot|s), a(\cdot|s) \rangle = 0$ for all s.

Proof: Under the given conditions, the system (KKT_{f-C_G}) is satisfied by Q. Furthermore, since f has the saddle property, $f-C_G$ is a convex optimization problem. This implies that δ and ρ are inverse optimal for Q for problem $f-C_G$. As a consequence, they are inverse optimal for G.

Remark IV.10. Notice that the saddle property is not required to claim $Q \subseteq Q_{f-DP1}$. It is only required to claim that the Q that satisfies (KKT_{f-C_G}) is indeed optimal for $f-C_G$, for which we need the convexity of $f-C_G$. Finally, note that [39] develops the approach of getting tighter bounds on distortion for finite blocklength codes. Bansal and Başar [2] could have, in principle,
applied this to their problem by replacing mutual information with f-mutual information. It is conceivable that this line of attack would be hindered by the lack of concavity in $I_f(P_{Y|X})$. □

Remark IV.11. $Q_{f,DPI}$ is a convex set that contains Q. Depending on the choice of f this relaxation may or may not be tight enough. The tightest relaxation of Q obtainable is the convex hull of Q. Characterizing this set remains a challenge. □

V. CONVEX RELAXATION FOR THE WITSENHAUSEN PROBLEM

We now study the relaxation with Q_{DPI} of the Witsenhausen problem, i.e., N with $\kappa(z) \equiv \zeta(x,\hat{s}) + \tau(x,s)$. Consider the problems,

$$\min_{Q \in Q} \langle \zeta + \tau, Q \rangle, \quad \text{(W)} \quad \min_{Q \in Q_{DPI}} \langle \zeta + \tau, Q \rangle. \quad \text{(C_w)}$$

The KKT conditions of C_W are a special case of (KKT$_{C_N}$). In Remark III.3, we alluded to the fact that solving (*) is harder for this problem. Although we cannot solve C_W, we can characterize its optimal value in terms of the Lagrange multiplier $\mu^a(\cdot)$.

Theorem 5.1: Suppose C_W has a solution $Q = Q^*$ and suppose system (KKT$_{C_N}$) characterizes the solution of C_W. Then the optimal value of C_W is given by

$$- (\mathbb{E}[\mu^a(S)] + \lambda^* + \mu^b)$$

$$+ \lambda(I(aP_S) - I(P_{Y|X})) = 0,$$

where the expectation is over Q^*. Complementarity slackness for the DPI gives $\mathbb{E}[\zeta(X,\hat{S}) + \tau(X,S) + \mu^a(S) + \lambda^* + \mu^b] = - (\mathbb{E}[\mu^a(S)] + \lambda^* + \mu^b).$

$- (\mathbb{E}[\mu^a(S)] + \lambda^* + \mu^b)$ is a lower bound on $\text{OPT}(W)$ too. Notice that although $\mu^a(\cdot)$ itself depends on Q^*, the expectation therein is over the given distribution P_S. Finally note that the result applies for any cost structure and not only for W.

We now show that it is not possible to solve (KKT$_{C_N}$) for C_W with $\nu(\cdot) \equiv 0$ using linear controllers.

Theorem 5.2: Consider the convex relaxation of the Witsenhausen problem, i.e., in C_W suppose $S \sim \mathcal{N}(0,\sigma_0^2)$, $Y = X + W$, $W \sim \mathcal{N}(0,\sigma_w^2)$ and independent of S, $\zeta(x,\hat{s}) \equiv
\[(x - \hat{s})^2, \tau(x, s) \equiv (x - s)^2.\] There exist no constants \(\gamma_0, \gamma_1\) such that the PDF \((S, \gamma_0S, Y, \gamma_1Y)\) solves \((\text{KKT}_{\text{CN}})\) with \(\nu(\cdot) \equiv 0.\)

Proof: Assume the contrary, i.e. assume \((\text{KKT}_{\text{CN}})\) holds for this PDF. The conditional distribution \(a(\hat{s}|s)\) induced by \(\gamma_0, \gamma_1\) is positive for all \(s, \hat{s}\). Since \(\langle a(\cdot|s), \nu^a(\cdot|s) \rangle = 0\) for all \(s, \nu^a(\hat{s}|s) = 0\) for almost every \(\hat{s}, s\). Likewise \(\nu^b(x) = 0\) for almost every \(x\). Now in (*) put \(\nu(\cdot) = 0\) and take expectation with \(P_{Y|X}(\cdot|x)\) to get that for almost every \(z\), \((x - \hat{s})^2 + (x - s)^2 + f_1(x) + f_2(s, \hat{s}) + \mu^a(s) + c = 0\), where \(f_1(\cdot), f_2(\cdot)\) are quadratic polynomials, \(\mu^a(\cdot)\) is a function on \(S\) and \(c\) is a constant. This implies that \((x - \hat{s})^2 + f_2(s, \hat{s})\) is independent of \(\hat{s}\) for arbitrary \(x, s\) except from a set of measure zero. Clearly, this is not possible for a quadratic \(f_2\).

Remark V.12. Linear controllers for the Witsenhausen problem: In a sense, the above theorem was only a sanity check. We already know from [3] that linear controllers are not optimal for the Witsenhausen problem; had we found \(\gamma_0, \gamma_1\) that solved \(C_W\), they would automatically be optimal for the Witsenhausen problem.

This indicates that if at all a solution of the Witsenhausen problem is to be found through \(C_W\), finding it will require a sophisticated attempt at solving \((\text{KKT}_{\text{CN}})\). Or, it may require a different convexification.

VI. CONCLUSIONS

This paper has presented an optimization-based approach and a general framework for stochastic control problems with nonclassical information structure that employed the idea of convex relaxation. We recovered solutions obtained by Bansal and Başar through this approach. In our formulation, these stochastic control problems are nonconvex optimization problems and the information-theoretic data processing inequality appears as an artifice of convexifying them. We gave insights into the relation of the cost structure of the problem and the structure of the convexification for inverse optimal control. Using certain \(f\)-divergences we obtained a wider set of inverse optimal cost functions than were obtainable through information theoretic methods.

VII. ACKNOWLEDGMENTS

The authors would like to thank Profs Maxim Raginsky and P. R. Kumar for their inputs. They are also grateful to the four anonymous reviewers for their comments. Ankur’s work was
supported in part by the INSPIRE Faculty award of the Department of Science and Technology, Government of India. The work of T. P. Coleman was supported in part by the NSF Science & Technology Center Grant CCF-0939370, in part by NSF Grant CCF-1065022, and in part by Systems on Nanoscale Information fabriCs (SONIC), one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.

REFERENCES

